Invariants
| Base field: | $\F_{73}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 106 x^{2} + 5329 x^{4}$ |
| Frobenius angles: | $\pm0.379317728891$, $\pm0.620682271109$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-7}, \sqrt{10})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $370$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $5436$ | $29550096$ | $151333722684$ | $806427320656896$ | $4297625826402259836$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $74$ | $5542$ | $389018$ | $28397086$ | $2073071594$ | $151333219078$ | $11047398519098$ | $806460204818878$ | $58871586708267914$ | $4297625823100962022$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 370 curves (of which all are hyperelliptic):
- $y^2=69 x^6+28 x^5+49 x^4+65 x^3+36 x^2+30 x+67$
- $y^2=53 x^6+67 x^5+26 x^4+33 x^3+34 x^2+4 x+43$
- $y^2=44 x^6+23 x^5+19 x^4+61 x^3+57 x^2+5 x+57$
- $y^2=x^6+42 x^5+22 x^4+13 x^3+66 x^2+25 x+66$
- $y^2=15 x^6+22 x^5+25 x^4+x^3+51 x^2+17 x+5$
- $y^2=2 x^6+37 x^5+52 x^4+5 x^3+36 x^2+12 x+25$
- $y^2=67 x^6+28 x^5+5 x^4+6 x^3+12 x^2+27 x+49$
- $y^2=63 x^6+70 x^5+26 x^4+40 x^3+18 x^2+18 x+64$
- $y^2=2 x^6+23 x^5+8 x^4+70 x^3+69 x^2+34 x+40$
- $y^2=10 x^6+42 x^5+40 x^4+58 x^3+53 x^2+24 x+54$
- $y^2=71 x^6+51 x^5+22 x^4+29 x^3+5 x^2+3 x+25$
- $y^2=63 x^6+36 x^5+37 x^4+72 x^3+25 x^2+15 x+52$
- $y^2=67 x^6+50 x^5+53 x^4+25 x^3+23 x^2+56 x+34$
- $y^2=43 x^6+31 x^5+46 x^4+52 x^3+42 x^2+61 x+24$
- $y^2=40 x^5+4 x^4+69 x^3+67 x^2+22 x+54$
- $y^2=54 x^5+20 x^4+53 x^3+43 x^2+37 x+51$
- $y^2=6 x^6+16 x^5+6 x^4+3 x^3+34 x^2+35 x+37$
- $y^2=30 x^6+7 x^5+30 x^4+15 x^3+24 x^2+29 x+39$
- $y^2=56 x^6+21 x^5+16 x^4+54 x^3+40 x^2+17 x+39$
- $y^2=57 x^6+61 x^5+9 x^4+71 x^3+60 x^2+55 x+10$
- and 350 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73^{2}}$.
Endomorphism algebra over $\F_{73}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-7}, \sqrt{10})\). |
| The base change of $A$ to $\F_{73^{2}}$ is 1.5329.ec 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-70}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.73.a_aec | $4$ | (not in LMFDB) |