L(s) = 1 | − 3·3-s − 6·5-s + 6·9-s + 6·11-s − 13-s + 18·15-s + 6·17-s − 4·19-s − 6·23-s + 17·25-s − 9·27-s − 3·29-s + 5·31-s − 18·33-s − 2·37-s + 3·39-s + 3·41-s + 43-s − 36·45-s − 9·47-s − 18·51-s + 6·53-s − 36·55-s + 12·57-s − 3·59-s − 13·61-s + 6·65-s + ⋯ |
L(s) = 1 | − 1.73·3-s − 2.68·5-s + 2·9-s + 1.80·11-s − 0.277·13-s + 4.64·15-s + 1.45·17-s − 0.917·19-s − 1.25·23-s + 17/5·25-s − 1.73·27-s − 0.557·29-s + 0.898·31-s − 3.13·33-s − 0.328·37-s + 0.480·39-s + 0.468·41-s + 0.152·43-s − 5.36·45-s − 1.31·47-s − 2.52·51-s + 0.824·53-s − 4.85·55-s + 1.58·57-s − 0.390·59-s − 1.66·61-s + 0.744·65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3111696 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.959763530829391837183297999517, −8.710206504266210235463390436096, −8.117051941293410790627888932049, −7.82014685789549243214842514264, −7.46808525755896647109077909280, −7.21044560837577064408029856653, −6.61339915518368447320487477451, −6.40918126890972494567761537091, −5.85029034320608533759182380018, −5.59320563302622552579647413090, −4.68518777546796800208285697480, −4.61451726972303206318621844708, −3.99649753670924468970330636455, −3.93881560402874991141100323373, −3.45356563246760492536841584847, −2.73340419430328274153309556371, −1.47150915248539676189471536097, −1.19679183310770055757348002303, 0, 0,
1.19679183310770055757348002303, 1.47150915248539676189471536097, 2.73340419430328274153309556371, 3.45356563246760492536841584847, 3.93881560402874991141100323373, 3.99649753670924468970330636455, 4.61451726972303206318621844708, 4.68518777546796800208285697480, 5.59320563302622552579647413090, 5.85029034320608533759182380018, 6.40918126890972494567761537091, 6.61339915518368447320487477451, 7.21044560837577064408029856653, 7.46808525755896647109077909280, 7.82014685789549243214842514264, 8.117051941293410790627888932049, 8.710206504266210235463390436096, 8.959763530829391837183297999517