L(s) = 1 | − 2·3-s − 2·5-s + 7-s + 3·9-s + 11-s − 2·13-s + 4·15-s + 2·17-s + 19-s − 2·21-s − 8·23-s + 3·25-s − 4·27-s + 13·29-s − 8·31-s − 2·33-s − 2·35-s + 9·37-s + 4·39-s + 41-s − 8·43-s − 6·45-s − 3·47-s − 9·49-s − 4·51-s + 21·53-s − 2·55-s + ⋯ |
L(s) = 1 | − 1.15·3-s − 0.894·5-s + 0.377·7-s + 9-s + 0.301·11-s − 0.554·13-s + 1.03·15-s + 0.485·17-s + 0.229·19-s − 0.436·21-s − 1.66·23-s + 3/5·25-s − 0.769·27-s + 2.41·29-s − 1.43·31-s − 0.348·33-s − 0.338·35-s + 1.47·37-s + 0.640·39-s + 0.156·41-s − 1.21·43-s − 0.894·45-s − 0.437·47-s − 9/7·49-s − 0.560·51-s + 2.88·53-s − 0.269·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.218274271\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.218274271\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.510203839435418480899377806906, −8.174391767498818491454105110195, −7.78354691531763440572749267764, −7.59853970542649093056392328168, −7.08330377345688089359487584648, −6.81709299104707576243394379703, −6.39348993850383040685470891157, −6.05943218701229777873808810423, −5.60163967980735655345191845708, −5.31831467017825097258819820361, −4.81783862462917972609698064619, −4.49798912628328329292787989743, −4.11258299473496025023532167824, −3.88631748839904468089155239947, −3.03595229064088046162316413225, −2.96965996218575630059966216571, −2.00298948191892838723692022532, −1.69364264963686892543734993444, −0.871100831039080794121158886632, −0.45129541017034157199197939395,
0.45129541017034157199197939395, 0.871100831039080794121158886632, 1.69364264963686892543734993444, 2.00298948191892838723692022532, 2.96965996218575630059966216571, 3.03595229064088046162316413225, 3.88631748839904468089155239947, 4.11258299473496025023532167824, 4.49798912628328329292787989743, 4.81783862462917972609698064619, 5.31831467017825097258819820361, 5.60163967980735655345191845708, 6.05943218701229777873808810423, 6.39348993850383040685470891157, 6.81709299104707576243394379703, 7.08330377345688089359487584648, 7.59853970542649093056392328168, 7.78354691531763440572749267764, 8.174391767498818491454105110195, 8.510203839435418480899377806906