L(s) = 1 | + 4·5-s − 9-s − 4·11-s − 8·19-s + 11·25-s − 16·29-s − 8·41-s − 4·45-s − 2·49-s − 16·55-s + 4·61-s − 28·71-s + 8·79-s + 81-s + 12·89-s − 32·95-s + 4·99-s − 12·101-s + 12·109-s − 10·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s − 64·145-s + 149-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 1/3·9-s − 1.20·11-s − 1.83·19-s + 11/5·25-s − 2.97·29-s − 1.24·41-s − 0.596·45-s − 2/7·49-s − 2.15·55-s + 0.512·61-s − 3.32·71-s + 0.900·79-s + 1/9·81-s + 1.27·89-s − 3.28·95-s + 0.402·99-s − 1.19·101-s + 1.14·109-s − 0.909·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 5.31·145-s + 0.0819·149-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8124226157\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8124226157\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.033805571326485220776066468610, −8.391766661146222979146243924709, −7.87908325224236674445370870054, −7.48656804435424140106639391647, −7.17722036182747735212216589319, −6.67837585847243828092457067607, −6.31791755509226671748118546615, −5.98818002603226774207718428429, −5.69755229040930681405156972580, −5.31389913408285740157837546032, −5.03970695130580699538981306540, −4.60132678322873577446396199695, −4.04162934722050316635304336416, −3.56987602628174528629380106109, −3.08828724626126866996927262036, −2.40430825028022819867698866586, −2.36037573143299676521277237975, −1.74129312462801483025330061617, −1.44012973547861501395924901937, −0.23210680810937249948008611811,
0.23210680810937249948008611811, 1.44012973547861501395924901937, 1.74129312462801483025330061617, 2.36037573143299676521277237975, 2.40430825028022819867698866586, 3.08828724626126866996927262036, 3.56987602628174528629380106109, 4.04162934722050316635304336416, 4.60132678322873577446396199695, 5.03970695130580699538981306540, 5.31389913408285740157837546032, 5.69755229040930681405156972580, 5.98818002603226774207718428429, 6.31791755509226671748118546615, 6.67837585847243828092457067607, 7.17722036182747735212216589319, 7.48656804435424140106639391647, 7.87908325224236674445370870054, 8.391766661146222979146243924709, 9.033805571326485220776066468610