Properties

Label 4080.2.m.k.2449.1
Level $4080$
Weight $2$
Character 4080.2449
Analytic conductor $32.579$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4080,2,Mod(2449,4080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4080.2449"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4080 = 2^{4} \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4080.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,4,0,0,0,-2,0,-4,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.5789640247\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2040)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2449.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4080.2449
Dual form 4080.2.m.k.2449.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{3} +(2.00000 - 1.00000i) q^{5} +4.00000i q^{7} -1.00000 q^{9} -2.00000 q^{11} -4.00000i q^{13} +(-1.00000 - 2.00000i) q^{15} +1.00000i q^{17} -4.00000 q^{19} +4.00000 q^{21} -8.00000i q^{23} +(3.00000 - 4.00000i) q^{25} +1.00000i q^{27} -8.00000 q^{29} +2.00000i q^{33} +(4.00000 + 8.00000i) q^{35} -2.00000i q^{37} -4.00000 q^{39} -4.00000 q^{41} +6.00000i q^{43} +(-2.00000 + 1.00000i) q^{45} +12.0000i q^{47} -9.00000 q^{49} +1.00000 q^{51} -14.0000i q^{53} +(-4.00000 + 2.00000i) q^{55} +4.00000i q^{57} +2.00000 q^{61} -4.00000i q^{63} +(-4.00000 - 8.00000i) q^{65} -2.00000i q^{67} -8.00000 q^{69} -14.0000 q^{71} -2.00000i q^{73} +(-4.00000 - 3.00000i) q^{75} -8.00000i q^{77} +4.00000 q^{79} +1.00000 q^{81} -16.0000i q^{83} +(1.00000 + 2.00000i) q^{85} +8.00000i q^{87} +6.00000 q^{89} +16.0000 q^{91} +(-8.00000 + 4.00000i) q^{95} -14.0000i q^{97} +2.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} - 2 q^{9} - 4 q^{11} - 2 q^{15} - 8 q^{19} + 8 q^{21} + 6 q^{25} - 16 q^{29} + 8 q^{35} - 8 q^{39} - 8 q^{41} - 4 q^{45} - 18 q^{49} + 2 q^{51} - 8 q^{55} + 4 q^{61} - 8 q^{65} - 16 q^{69}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4080\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(511\) \(817\) \(1361\) \(3061\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 2.00000 1.00000i 0.894427 0.447214i
\(6\) 0 0
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) −1.00000 2.00000i −0.258199 0.516398i
\(16\) 0 0
\(17\) 1.00000i 0.242536i
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 0 0
\(23\) 8.00000i 1.66812i −0.551677 0.834058i \(-0.686012\pi\)
0.551677 0.834058i \(-0.313988\pi\)
\(24\) 0 0
\(25\) 3.00000 4.00000i 0.600000 0.800000i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 2.00000i 0.348155i
\(34\) 0 0
\(35\) 4.00000 + 8.00000i 0.676123 + 1.35225i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) −4.00000 −0.624695 −0.312348 0.949968i \(-0.601115\pi\)
−0.312348 + 0.949968i \(0.601115\pi\)
\(42\) 0 0
\(43\) 6.00000i 0.914991i 0.889212 + 0.457496i \(0.151253\pi\)
−0.889212 + 0.457496i \(0.848747\pi\)
\(44\) 0 0
\(45\) −2.00000 + 1.00000i −0.298142 + 0.149071i
\(46\) 0 0
\(47\) 12.0000i 1.75038i 0.483779 + 0.875190i \(0.339264\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 0 0
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 1.00000 0.140028
\(52\) 0 0
\(53\) 14.0000i 1.92305i −0.274721 0.961524i \(-0.588586\pi\)
0.274721 0.961524i \(-0.411414\pi\)
\(54\) 0 0
\(55\) −4.00000 + 2.00000i −0.539360 + 0.269680i
\(56\) 0 0
\(57\) 4.00000i 0.529813i
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 4.00000i 0.503953i
\(64\) 0 0
\(65\) −4.00000 8.00000i −0.496139 0.992278i
\(66\) 0 0
\(67\) 2.00000i 0.244339i −0.992509 0.122169i \(-0.961015\pi\)
0.992509 0.122169i \(-0.0389851\pi\)
\(68\) 0 0
\(69\) −8.00000 −0.963087
\(70\) 0 0
\(71\) −14.0000 −1.66149 −0.830747 0.556650i \(-0.812086\pi\)
−0.830747 + 0.556650i \(0.812086\pi\)
\(72\) 0 0
\(73\) 2.00000i 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 0 0
\(75\) −4.00000 3.00000i −0.461880 0.346410i
\(76\) 0 0
\(77\) 8.00000i 0.911685i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000i 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 0 0
\(85\) 1.00000 + 2.00000i 0.108465 + 0.216930i
\(86\) 0 0
\(87\) 8.00000i 0.857690i
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 16.0000 1.67726
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.00000 + 4.00000i −0.820783 + 0.410391i
\(96\) 0 0
\(97\) 14.0000i 1.42148i −0.703452 0.710742i \(-0.748359\pi\)
0.703452 0.710742i \(-0.251641\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 10.0000i 0.985329i −0.870219 0.492665i \(-0.836023\pi\)
0.870219 0.492665i \(-0.163977\pi\)
\(104\) 0 0
\(105\) 8.00000 4.00000i 0.780720 0.390360i
\(106\) 0 0
\(107\) 20.0000i 1.93347i −0.255774 0.966736i \(-0.582330\pi\)
0.255774 0.966736i \(-0.417670\pi\)
\(108\) 0 0
\(109\) 6.00000 0.574696 0.287348 0.957826i \(-0.407226\pi\)
0.287348 + 0.957826i \(0.407226\pi\)
\(110\) 0 0
\(111\) −2.00000 −0.189832
\(112\) 0 0
\(113\) 2.00000i 0.188144i 0.995565 + 0.0940721i \(0.0299884\pi\)
−0.995565 + 0.0940721i \(0.970012\pi\)
\(114\) 0 0
\(115\) −8.00000 16.0000i −0.746004 1.49201i
\(116\) 0 0
\(117\) 4.00000i 0.369800i
\(118\) 0 0
\(119\) −4.00000 −0.366679
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 4.00000i 0.360668i
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 18.0000i 1.59724i 0.601834 + 0.798621i \(0.294437\pi\)
−0.601834 + 0.798621i \(0.705563\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 0 0
\(133\) 16.0000i 1.38738i
\(134\) 0 0
\(135\) 1.00000 + 2.00000i 0.0860663 + 0.172133i
\(136\) 0 0
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 8.00000i 0.668994i
\(144\) 0 0
\(145\) −16.0000 + 8.00000i −1.32873 + 0.664364i
\(146\) 0 0
\(147\) 9.00000i 0.742307i
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 1.00000i 0.0808452i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 4.00000i 0.319235i −0.987179 0.159617i \(-0.948974\pi\)
0.987179 0.159617i \(-0.0510260\pi\)
\(158\) 0 0
\(159\) −14.0000 −1.11027
\(160\) 0 0
\(161\) 32.0000 2.52195
\(162\) 0 0
\(163\) 4.00000i 0.313304i −0.987654 0.156652i \(-0.949930\pi\)
0.987654 0.156652i \(-0.0500701\pi\)
\(164\) 0 0
\(165\) 2.00000 + 4.00000i 0.155700 + 0.311400i
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) 0 0
\(173\) 6.00000i 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 0 0
\(175\) 16.0000 + 12.0000i 1.20949 + 0.907115i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) −2.00000 4.00000i −0.147043 0.294086i
\(186\) 0 0
\(187\) 2.00000i 0.146254i
\(188\) 0 0
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 10.0000i 0.719816i 0.932988 + 0.359908i \(0.117192\pi\)
−0.932988 + 0.359908i \(0.882808\pi\)
\(194\) 0 0
\(195\) −8.00000 + 4.00000i −0.572892 + 0.286446i
\(196\) 0 0
\(197\) 6.00000i 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) 0 0
\(199\) 4.00000 0.283552 0.141776 0.989899i \(-0.454719\pi\)
0.141776 + 0.989899i \(0.454719\pi\)
\(200\) 0 0
\(201\) −2.00000 −0.141069
\(202\) 0 0
\(203\) 32.0000i 2.24596i
\(204\) 0 0
\(205\) −8.00000 + 4.00000i −0.558744 + 0.279372i
\(206\) 0 0
\(207\) 8.00000i 0.556038i
\(208\) 0 0
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) 0 0
\(213\) 14.0000i 0.959264i
\(214\) 0 0
\(215\) 6.00000 + 12.0000i 0.409197 + 0.818393i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 18.0000i 1.20537i −0.797980 0.602685i \(-0.794098\pi\)
0.797980 0.602685i \(-0.205902\pi\)
\(224\) 0 0
\(225\) −3.00000 + 4.00000i −0.200000 + 0.266667i
\(226\) 0 0
\(227\) 4.00000i 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) −8.00000 −0.526361
\(232\) 0 0
\(233\) 6.00000i 0.393073i −0.980497 0.196537i \(-0.937031\pi\)
0.980497 0.196537i \(-0.0629694\pi\)
\(234\) 0 0
\(235\) 12.0000 + 24.0000i 0.782794 + 1.56559i
\(236\) 0 0
\(237\) 4.00000i 0.259828i
\(238\) 0 0
\(239\) −28.0000 −1.81117 −0.905585 0.424165i \(-0.860568\pi\)
−0.905585 + 0.424165i \(0.860568\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −18.0000 + 9.00000i −1.14998 + 0.574989i
\(246\) 0 0
\(247\) 16.0000i 1.01806i
\(248\) 0 0
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 0 0
\(255\) 2.00000 1.00000i 0.125245 0.0626224i
\(256\) 0 0
\(257\) 18.0000i 1.12281i −0.827541 0.561405i \(-0.810261\pi\)
0.827541 0.561405i \(-0.189739\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 0 0
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) 0 0
\(265\) −14.0000 28.0000i −0.860013 1.72003i
\(266\) 0 0
\(267\) 6.00000i 0.367194i
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) 16.0000i 0.968364i
\(274\) 0 0
\(275\) −6.00000 + 8.00000i −0.361814 + 0.482418i
\(276\) 0 0
\(277\) 18.0000i 1.08152i 0.841178 + 0.540758i \(0.181862\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −6.00000 −0.357930 −0.178965 0.983855i \(-0.557275\pi\)
−0.178965 + 0.983855i \(0.557275\pi\)
\(282\) 0 0
\(283\) 24.0000i 1.42665i 0.700832 + 0.713326i \(0.252812\pi\)
−0.700832 + 0.713326i \(0.747188\pi\)
\(284\) 0 0
\(285\) 4.00000 + 8.00000i 0.236940 + 0.473879i
\(286\) 0 0
\(287\) 16.0000i 0.944450i
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) −14.0000 −0.820695
\(292\) 0 0
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 2.00000i 0.116052i
\(298\) 0 0
\(299\) −32.0000 −1.85061
\(300\) 0 0
\(301\) −24.0000 −1.38334
\(302\) 0 0
\(303\) 6.00000i 0.344691i
\(304\) 0 0
\(305\) 4.00000 2.00000i 0.229039 0.114520i
\(306\) 0 0
\(307\) 2.00000i 0.114146i 0.998370 + 0.0570730i \(0.0181768\pi\)
−0.998370 + 0.0570730i \(0.981823\pi\)
\(308\) 0 0
\(309\) −10.0000 −0.568880
\(310\) 0 0
\(311\) 30.0000 1.70114 0.850572 0.525859i \(-0.176256\pi\)
0.850572 + 0.525859i \(0.176256\pi\)
\(312\) 0 0
\(313\) 34.0000i 1.92179i 0.276907 + 0.960897i \(0.410691\pi\)
−0.276907 + 0.960897i \(0.589309\pi\)
\(314\) 0 0
\(315\) −4.00000 8.00000i −0.225374 0.450749i
\(316\) 0 0
\(317\) 30.0000i 1.68497i 0.538721 + 0.842484i \(0.318908\pi\)
−0.538721 + 0.842484i \(0.681092\pi\)
\(318\) 0 0
\(319\) 16.0000 0.895828
\(320\) 0 0
\(321\) −20.0000 −1.11629
\(322\) 0 0
\(323\) 4.00000i 0.222566i
\(324\) 0 0
\(325\) −16.0000 12.0000i −0.887520 0.665640i
\(326\) 0 0
\(327\) 6.00000i 0.331801i
\(328\) 0 0
\(329\) −48.0000 −2.64633
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) −2.00000 4.00000i −0.109272 0.218543i
\(336\) 0 0
\(337\) 22.0000i 1.19842i −0.800593 0.599208i \(-0.795482\pi\)
0.800593 0.599208i \(-0.204518\pi\)
\(338\) 0 0
\(339\) 2.00000 0.108625
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 8.00000i 0.431959i
\(344\) 0 0
\(345\) −16.0000 + 8.00000i −0.861411 + 0.430706i
\(346\) 0 0
\(347\) 4.00000i 0.214731i −0.994220 0.107366i \(-0.965758\pi\)
0.994220 0.107366i \(-0.0342415\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 4.00000 0.213504
\(352\) 0 0
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) −28.0000 + 14.0000i −1.48609 + 0.743043i
\(356\) 0 0
\(357\) 4.00000i 0.211702i
\(358\) 0 0
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 7.00000i 0.367405i
\(364\) 0 0
\(365\) −2.00000 4.00000i −0.104685 0.209370i
\(366\) 0 0
\(367\) 16.0000i 0.835193i −0.908633 0.417597i \(-0.862873\pi\)
0.908633 0.417597i \(-0.137127\pi\)
\(368\) 0 0
\(369\) 4.00000 0.208232
\(370\) 0 0
\(371\) 56.0000 2.90738
\(372\) 0 0
\(373\) 32.0000i 1.65690i 0.560065 + 0.828449i \(0.310776\pi\)
−0.560065 + 0.828449i \(0.689224\pi\)
\(374\) 0 0
\(375\) −11.0000 2.00000i −0.568038 0.103280i
\(376\) 0 0
\(377\) 32.0000i 1.64808i
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 0 0
\(381\) 18.0000 0.922168
\(382\) 0 0
\(383\) 24.0000i 1.22634i −0.789950 0.613171i \(-0.789894\pi\)
0.789950 0.613171i \(-0.210106\pi\)
\(384\) 0 0
\(385\) −8.00000 16.0000i −0.407718 0.815436i
\(386\) 0 0
\(387\) 6.00000i 0.304997i
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) 0 0
\(393\) 18.0000i 0.907980i
\(394\) 0 0
\(395\) 8.00000 4.00000i 0.402524 0.201262i
\(396\) 0 0
\(397\) 18.0000i 0.903394i −0.892171 0.451697i \(-0.850819\pi\)
0.892171 0.451697i \(-0.149181\pi\)
\(398\) 0 0
\(399\) −16.0000 −0.801002
\(400\) 0 0
\(401\) 4.00000 0.199750 0.0998752 0.995000i \(-0.468156\pi\)
0.0998752 + 0.995000i \(0.468156\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 2.00000 1.00000i 0.0993808 0.0496904i
\(406\) 0 0
\(407\) 4.00000i 0.198273i
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 14.0000 0.690569
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −16.0000 32.0000i −0.785409 1.57082i
\(416\) 0 0
\(417\) 16.0000i 0.783523i
\(418\) 0 0
\(419\) −6.00000 −0.293119 −0.146560 0.989202i \(-0.546820\pi\)
−0.146560 + 0.989202i \(0.546820\pi\)
\(420\) 0 0
\(421\) −14.0000 −0.682318 −0.341159 0.940006i \(-0.610819\pi\)
−0.341159 + 0.940006i \(0.610819\pi\)
\(422\) 0 0
\(423\) 12.0000i 0.583460i
\(424\) 0 0
\(425\) 4.00000 + 3.00000i 0.194029 + 0.145521i
\(426\) 0 0
\(427\) 8.00000i 0.387147i
\(428\) 0 0
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) 2.00000 0.0963366 0.0481683 0.998839i \(-0.484662\pi\)
0.0481683 + 0.998839i \(0.484662\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 8.00000 + 16.0000i 0.383571 + 0.767141i
\(436\) 0 0
\(437\) 32.0000i 1.53077i
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) 0 0
\(443\) 36.0000i 1.71041i −0.518289 0.855206i \(-0.673431\pi\)
0.518289 0.855206i \(-0.326569\pi\)
\(444\) 0 0
\(445\) 12.0000 6.00000i 0.568855 0.284427i
\(446\) 0 0
\(447\) 6.00000i 0.283790i
\(448\) 0 0
\(449\) 36.0000 1.69895 0.849473 0.527633i \(-0.176920\pi\)
0.849473 + 0.527633i \(0.176920\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 0 0
\(453\) 16.0000i 0.751746i
\(454\) 0 0
\(455\) 32.0000 16.0000i 1.50018 0.750092i
\(456\) 0 0
\(457\) 12.0000i 0.561336i 0.959805 + 0.280668i \(0.0905560\pi\)
−0.959805 + 0.280668i \(0.909444\pi\)
\(458\) 0 0
\(459\) −1.00000 −0.0466760
\(460\) 0 0
\(461\) −6.00000 −0.279448 −0.139724 0.990190i \(-0.544622\pi\)
−0.139724 + 0.990190i \(0.544622\pi\)
\(462\) 0 0
\(463\) 14.0000i 0.650635i −0.945605 0.325318i \(-0.894529\pi\)
0.945605 0.325318i \(-0.105471\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.0000i 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) 0 0
\(471\) −4.00000 −0.184310
\(472\) 0 0
\(473\) 12.0000i 0.551761i
\(474\) 0 0
\(475\) −12.0000 + 16.0000i −0.550598 + 0.734130i
\(476\) 0 0
\(477\) 14.0000i 0.641016i
\(478\) 0 0
\(479\) 14.0000 0.639676 0.319838 0.947472i \(-0.396371\pi\)
0.319838 + 0.947472i \(0.396371\pi\)
\(480\) 0 0
\(481\) −8.00000 −0.364769
\(482\) 0 0
\(483\) 32.0000i 1.45605i
\(484\) 0 0
\(485\) −14.0000 28.0000i −0.635707 1.27141i
\(486\) 0 0
\(487\) 16.0000i 0.725029i 0.931978 + 0.362515i \(0.118082\pi\)
−0.931978 + 0.362515i \(0.881918\pi\)
\(488\) 0 0
\(489\) −4.00000 −0.180886
\(490\) 0 0
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) 0 0
\(493\) 8.00000i 0.360302i
\(494\) 0 0
\(495\) 4.00000 2.00000i 0.179787 0.0898933i
\(496\) 0 0
\(497\) 56.0000i 2.51194i
\(498\) 0 0
\(499\) −40.0000 −1.79065 −0.895323 0.445418i \(-0.853055\pi\)
−0.895323 + 0.445418i \(0.853055\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.0000i 0.713405i −0.934218 0.356702i \(-0.883901\pi\)
0.934218 0.356702i \(-0.116099\pi\)
\(504\) 0 0
\(505\) −12.0000 + 6.00000i −0.533993 + 0.266996i
\(506\) 0 0
\(507\) 3.00000i 0.133235i
\(508\) 0 0
\(509\) 38.0000 1.68432 0.842160 0.539227i \(-0.181284\pi\)
0.842160 + 0.539227i \(0.181284\pi\)
\(510\) 0 0
\(511\) 8.00000 0.353899
\(512\) 0 0
\(513\) 4.00000i 0.176604i
\(514\) 0 0
\(515\) −10.0000 20.0000i −0.440653 0.881305i
\(516\) 0 0
\(517\) 24.0000i 1.05552i
\(518\) 0 0
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 0 0
\(523\) 2.00000i 0.0874539i −0.999044 0.0437269i \(-0.986077\pi\)
0.999044 0.0437269i \(-0.0139232\pi\)
\(524\) 0 0
\(525\) 12.0000 16.0000i 0.523723 0.698297i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −41.0000 −1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 16.0000i 0.693037i
\(534\) 0 0
\(535\) −20.0000 40.0000i −0.864675 1.72935i
\(536\) 0 0
\(537\) 4.00000i 0.172613i
\(538\) 0 0
\(539\) 18.0000 0.775315
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 0 0
\(543\) 10.0000i 0.429141i
\(544\) 0 0
\(545\) 12.0000 6.00000i 0.514024 0.257012i
\(546\) 0 0
\(547\) 20.0000i 0.855138i −0.903983 0.427569i \(-0.859370\pi\)
0.903983 0.427569i \(-0.140630\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 32.0000 1.36325
\(552\) 0 0
\(553\) 16.0000i 0.680389i
\(554\) 0 0
\(555\) −4.00000 + 2.00000i −0.169791 + 0.0848953i
\(556\) 0 0
\(557\) 42.0000i 1.77960i −0.456354 0.889799i \(-0.650845\pi\)
0.456354 0.889799i \(-0.349155\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) −2.00000 −0.0844401
\(562\) 0 0
\(563\) 12.0000i 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 0 0
\(565\) 2.00000 + 4.00000i 0.0841406 + 0.168281i
\(566\) 0 0
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) −6.00000 −0.251533 −0.125767 0.992060i \(-0.540139\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −32.0000 24.0000i −1.33449 1.00087i
\(576\) 0 0
\(577\) 20.0000i 0.832611i 0.909225 + 0.416305i \(0.136675\pi\)
−0.909225 + 0.416305i \(0.863325\pi\)
\(578\) 0 0
\(579\) 10.0000 0.415586
\(580\) 0 0
\(581\) 64.0000 2.65517
\(582\) 0 0
\(583\) 28.0000i 1.15964i
\(584\) 0 0
\(585\) 4.00000 + 8.00000i 0.165380 + 0.330759i
\(586\) 0 0
\(587\) 40.0000i 1.65098i 0.564419 + 0.825488i \(0.309100\pi\)
−0.564419 + 0.825488i \(0.690900\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 0 0
\(593\) 14.0000i 0.574911i −0.957794 0.287456i \(-0.907191\pi\)
0.957794 0.287456i \(-0.0928094\pi\)
\(594\) 0 0
\(595\) −8.00000 + 4.00000i −0.327968 + 0.163984i
\(596\) 0 0
\(597\) 4.00000i 0.163709i
\(598\) 0 0
\(599\) 4.00000 0.163436 0.0817178 0.996656i \(-0.473959\pi\)
0.0817178 + 0.996656i \(0.473959\pi\)
\(600\) 0 0
\(601\) 30.0000 1.22373 0.611863 0.790964i \(-0.290420\pi\)
0.611863 + 0.790964i \(0.290420\pi\)
\(602\) 0 0
\(603\) 2.00000i 0.0814463i
\(604\) 0 0
\(605\) −14.0000 + 7.00000i −0.569181 + 0.284590i
\(606\) 0 0
\(607\) 8.00000i 0.324710i 0.986732 + 0.162355i \(0.0519090\pi\)
−0.986732 + 0.162355i \(0.948091\pi\)
\(608\) 0 0
\(609\) −32.0000 −1.29671
\(610\) 0 0
\(611\) 48.0000 1.94187
\(612\) 0 0
\(613\) 20.0000i 0.807792i 0.914805 + 0.403896i \(0.132344\pi\)
−0.914805 + 0.403896i \(0.867656\pi\)
\(614\) 0 0
\(615\) 4.00000 + 8.00000i 0.161296 + 0.322591i
\(616\) 0 0
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 0 0
\(619\) −20.0000 −0.803868 −0.401934 0.915669i \(-0.631662\pi\)
−0.401934 + 0.915669i \(0.631662\pi\)
\(620\) 0 0
\(621\) 8.00000 0.321029
\(622\) 0 0
\(623\) 24.0000i 0.961540i
\(624\) 0 0
\(625\) −7.00000 24.0000i −0.280000 0.960000i
\(626\) 0 0
\(627\) 8.00000i 0.319489i
\(628\) 0 0
\(629\) 2.00000 0.0797452
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 28.0000i 1.11290i
\(634\) 0 0
\(635\) 18.0000 + 36.0000i 0.714308 + 1.42862i
\(636\) 0 0
\(637\) 36.0000i 1.42637i
\(638\) 0 0
\(639\) 14.0000 0.553831
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 12.0000i 0.473234i 0.971603 + 0.236617i \(0.0760386\pi\)
−0.971603 + 0.236617i \(0.923961\pi\)
\(644\) 0 0
\(645\) 12.0000 6.00000i 0.472500 0.236250i
\(646\) 0 0
\(647\) 16.0000i 0.629025i 0.949253 + 0.314512i \(0.101841\pi\)
−0.949253 + 0.314512i \(0.898159\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 6.00000i 0.234798i 0.993085 + 0.117399i \(0.0374557\pi\)
−0.993085 + 0.117399i \(0.962544\pi\)
\(654\) 0 0
\(655\) −36.0000 + 18.0000i −1.40664 + 0.703318i
\(656\) 0 0
\(657\) 2.00000i 0.0780274i
\(658\) 0 0
\(659\) 24.0000 0.934907 0.467454 0.884018i \(-0.345171\pi\)
0.467454 + 0.884018i \(0.345171\pi\)
\(660\) 0 0
\(661\) −10.0000 −0.388955 −0.194477 0.980907i \(-0.562301\pi\)
−0.194477 + 0.980907i \(0.562301\pi\)
\(662\) 0 0
\(663\) 4.00000i 0.155347i
\(664\) 0 0
\(665\) −16.0000 32.0000i −0.620453 1.24091i
\(666\) 0 0
\(667\) 64.0000i 2.47809i
\(668\) 0 0
\(669\) −18.0000 −0.695920
\(670\) 0 0
\(671\) −4.00000 −0.154418
\(672\) 0 0
\(673\) 34.0000i 1.31060i 0.755367 + 0.655302i \(0.227459\pi\)
−0.755367 + 0.655302i \(0.772541\pi\)
\(674\) 0 0
\(675\) 4.00000 + 3.00000i 0.153960 + 0.115470i
\(676\) 0 0
\(677\) 42.0000i 1.61419i −0.590421 0.807096i \(-0.701038\pi\)
0.590421 0.807096i \(-0.298962\pi\)
\(678\) 0 0
\(679\) 56.0000 2.14908
\(680\) 0 0
\(681\) −4.00000 −0.153280
\(682\) 0 0
\(683\) 44.0000i 1.68361i −0.539779 0.841807i \(-0.681492\pi\)
0.539779 0.841807i \(-0.318508\pi\)
\(684\) 0 0
\(685\) 14.0000 + 28.0000i 0.534913 + 1.06983i
\(686\) 0 0
\(687\) 6.00000i 0.228914i
\(688\) 0 0
\(689\) −56.0000 −2.13343
\(690\) 0 0
\(691\) −24.0000 −0.913003 −0.456502 0.889723i \(-0.650898\pi\)
−0.456502 + 0.889723i \(0.650898\pi\)
\(692\) 0 0
\(693\) 8.00000i 0.303895i
\(694\) 0 0
\(695\) 32.0000 16.0000i 1.21383 0.606915i
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 0 0
\(699\) −6.00000 −0.226941
\(700\) 0 0
\(701\) 22.0000 0.830929 0.415464 0.909610i \(-0.363619\pi\)
0.415464 + 0.909610i \(0.363619\pi\)
\(702\) 0 0
\(703\) 8.00000i 0.301726i
\(704\) 0 0
\(705\) 24.0000 12.0000i 0.903892 0.451946i
\(706\) 0 0
\(707\) 24.0000i 0.902613i
\(708\) 0 0
\(709\) 50.0000 1.87779 0.938895 0.344204i \(-0.111851\pi\)
0.938895 + 0.344204i \(0.111851\pi\)
\(710\) 0 0
\(711\) −4.00000 −0.150012
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 8.00000 + 16.0000i 0.299183 + 0.598366i
\(716\) 0 0
\(717\) 28.0000i 1.04568i
\(718\) 0 0
\(719\) −14.0000 −0.522112 −0.261056 0.965324i \(-0.584071\pi\)
−0.261056 + 0.965324i \(0.584071\pi\)
\(720\) 0 0
\(721\) 40.0000 1.48968
\(722\) 0 0
\(723\) 22.0000i 0.818189i
\(724\) 0 0
\(725\) −24.0000 + 32.0000i −0.891338 + 1.18845i
\(726\) 0 0
\(727\) 18.0000i 0.667583i −0.942647 0.333792i \(-0.891672\pi\)
0.942647 0.333792i \(-0.108328\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −6.00000 −0.221918
\(732\) 0 0
\(733\) 12.0000i 0.443230i 0.975134 + 0.221615i \(0.0711328\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(734\) 0 0
\(735\) 9.00000 + 18.0000i 0.331970 + 0.663940i
\(736\) 0 0
\(737\) 4.00000i 0.147342i
\(738\) 0 0
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) −12.0000 + 6.00000i −0.439646 + 0.219823i
\(746\) 0 0
\(747\) 16.0000i 0.585409i
\(748\) 0 0
\(749\) 80.0000 2.92314
\(750\) 0 0
\(751\) 28.0000 1.02173 0.510867 0.859660i \(-0.329324\pi\)
0.510867 + 0.859660i \(0.329324\pi\)
\(752\) 0 0
\(753\) 20.0000i 0.728841i
\(754\) 0 0
\(755\) −32.0000 + 16.0000i −1.16460 + 0.582300i
\(756\) 0 0
\(757\) 40.0000i 1.45382i 0.686730 + 0.726912i \(0.259045\pi\)
−0.686730 + 0.726912i \(0.740955\pi\)
\(758\) 0 0
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) −26.0000 −0.942499 −0.471250 0.882000i \(-0.656197\pi\)
−0.471250 + 0.882000i \(0.656197\pi\)
\(762\) 0 0
\(763\) 24.0000i 0.868858i
\(764\) 0 0
\(765\) −1.00000 2.00000i −0.0361551 0.0723102i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 0 0
\(773\) 26.0000i 0.935155i 0.883952 + 0.467578i \(0.154873\pi\)
−0.883952 + 0.467578i \(0.845127\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.00000i 0.286998i
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) 28.0000 1.00192
\(782\) 0 0
\(783\) 8.00000i 0.285897i
\(784\) 0 0
\(785\) −4.00000 8.00000i −0.142766 0.285532i
\(786\) 0 0
\(787\) 28.0000i 0.998092i −0.866575 0.499046i \(-0.833684\pi\)
0.866575 0.499046i \(-0.166316\pi\)
\(788\) 0 0
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) −8.00000 −0.284447
\(792\) 0 0
\(793\) 8.00000i 0.284088i
\(794\) 0 0
\(795\) −28.0000 + 14.0000i −0.993058 + 0.496529i
\(796\) 0 0
\(797\) 18.0000i 0.637593i 0.947823 + 0.318796i \(0.103279\pi\)
−0.947823 + 0.318796i \(0.896721\pi\)
\(798\) 0 0
\(799\) −12.0000 −0.424529
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 4.00000i 0.141157i
\(804\) 0 0
\(805\) 64.0000 32.0000i 2.25570 1.12785i
\(806\) 0 0
\(807\) 24.0000i 0.844840i
\(808\) 0 0
\(809\) −12.0000 −0.421898 −0.210949 0.977497i \(-0.567655\pi\)
−0.210949 + 0.977497i \(0.567655\pi\)
\(810\) 0 0
\(811\) −24.0000 −0.842754 −0.421377 0.906886i \(-0.638453\pi\)
−0.421377 + 0.906886i \(0.638453\pi\)
\(812\) 0 0
\(813\) 16.0000i 0.561144i
\(814\) 0 0
\(815\) −4.00000 8.00000i −0.140114 0.280228i
\(816\) 0 0
\(817\) 24.0000i 0.839654i
\(818\) 0 0
\(819\) −16.0000 −0.559085
\(820\) 0 0
\(821\) −12.0000 −0.418803 −0.209401 0.977830i \(-0.567152\pi\)
−0.209401 + 0.977830i \(0.567152\pi\)
\(822\) 0 0
\(823\) 4.00000i 0.139431i 0.997567 + 0.0697156i \(0.0222092\pi\)
−0.997567 + 0.0697156i \(0.977791\pi\)
\(824\) 0 0
\(825\) 8.00000 + 6.00000i 0.278524 + 0.208893i
\(826\) 0 0
\(827\) 36.0000i 1.25184i −0.779886 0.625921i \(-0.784723\pi\)
0.779886 0.625921i \(-0.215277\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 18.0000 0.624413
\(832\) 0 0
\(833\) 9.00000i 0.311832i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −42.0000 −1.45000 −0.725001 0.688748i \(-0.758161\pi\)
−0.725001 + 0.688748i \(0.758161\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 6.00000i 0.206651i
\(844\) 0 0
\(845\) −6.00000 + 3.00000i −0.206406 + 0.103203i
\(846\) 0 0
\(847\) 28.0000i 0.962091i
\(848\) 0 0
\(849\) 24.0000 0.823678
\(850\) 0 0
\(851\) −16.0000 −0.548473
\(852\) 0 0
\(853\) 38.0000i 1.30110i 0.759465 + 0.650548i \(0.225461\pi\)
−0.759465 + 0.650548i \(0.774539\pi\)
\(854\) 0 0
\(855\) 8.00000 4.00000i 0.273594 0.136797i
\(856\) 0 0
\(857\) 50.0000i 1.70797i −0.520300 0.853984i \(-0.674180\pi\)
0.520300 0.853984i \(-0.325820\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) −16.0000 −0.545279
\(862\) 0 0
\(863\) 48.0000i 1.63394i 0.576681 + 0.816970i \(0.304348\pi\)
−0.576681 + 0.816970i \(0.695652\pi\)
\(864\) 0 0
\(865\) −6.00000 12.0000i −0.204006 0.408012i
\(866\) 0 0
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) −8.00000 −0.271070
\(872\) 0 0
\(873\) 14.0000i 0.473828i
\(874\) 0 0
\(875\) 44.0000 + 8.00000i 1.48747 + 0.270449i
\(876\) 0 0
\(877\) 38.0000i 1.28317i 0.767052 + 0.641584i \(0.221723\pi\)
−0.767052 + 0.641584i \(0.778277\pi\)
\(878\) 0 0
\(879\) 14.0000 0.472208
\(880\) 0 0
\(881\) 4.00000 0.134763 0.0673817 0.997727i \(-0.478535\pi\)
0.0673817 + 0.997727i \(0.478535\pi\)
\(882\) 0 0
\(883\) 10.0000i 0.336527i −0.985742 0.168263i \(-0.946184\pi\)
0.985742 0.168263i \(-0.0538159\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 24.0000i 0.805841i 0.915235 + 0.402921i \(0.132005\pi\)
−0.915235 + 0.402921i \(0.867995\pi\)
\(888\) 0 0
\(889\) −72.0000 −2.41480
\(890\) 0 0
\(891\) −2.00000 −0.0670025
\(892\) 0 0
\(893\) 48.0000i 1.60626i
\(894\) 0 0
\(895\) −8.00000 + 4.00000i −0.267411 + 0.133705i
\(896\) 0 0
\(897\) 32.0000i 1.06845i
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 14.0000 0.466408
\(902\) 0 0
\(903\) 24.0000i 0.798670i
\(904\) 0 0
\(905\) 20.0000 10.0000i 0.664822 0.332411i
\(906\) 0 0
\(907\) 40.0000i 1.32818i −0.747653 0.664089i \(-0.768820\pi\)
0.747653 0.664089i \(-0.231180\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) 32.0000i 1.05905i
\(914\) 0 0
\(915\) −2.00000 4.00000i −0.0661180 0.132236i
\(916\) 0 0
\(917\) 72.0000i 2.37765i
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 2.00000 0.0659022
\(922\) 0 0
\(923\) 56.0000i 1.84326i
\(924\) 0 0
\(925\) −8.00000 6.00000i −0.263038 0.197279i
\(926\) 0 0
\(927\) 10.0000i 0.328443i
\(928\) 0 0
\(929\) −32.0000 −1.04989 −0.524943 0.851137i \(-0.675913\pi\)
−0.524943 + 0.851137i \(0.675913\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) 0 0
\(933\) 30.0000i 0.982156i
\(934\) 0 0
\(935\) −2.00000 4.00000i −0.0654070 0.130814i
\(936\) 0 0
\(937\) 4.00000i 0.130674i −0.997863 0.0653372i \(-0.979188\pi\)
0.997863 0.0653372i \(-0.0208123\pi\)
\(938\) 0 0
\(939\) 34.0000 1.10955
\(940\) 0 0
\(941\) −40.0000 −1.30396 −0.651981 0.758235i \(-0.726062\pi\)
−0.651981 + 0.758235i \(0.726062\pi\)
\(942\) 0 0
\(943\) 32.0000i 1.04206i
\(944\) 0 0
\(945\) −8.00000 + 4.00000i −0.260240 + 0.130120i
\(946\) 0 0
\(947\) 12.0000i 0.389948i −0.980808 0.194974i \(-0.937538\pi\)
0.980808 0.194974i \(-0.0624622\pi\)
\(948\) 0 0
\(949\) −8.00000 −0.259691
\(950\) 0 0
\(951\) 30.0000 0.972817
\(952\) 0 0
\(953\) 6.00000i 0.194359i −0.995267 0.0971795i \(-0.969018\pi\)
0.995267 0.0971795i \(-0.0309821\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 16.0000i 0.517207i
\(958\) 0 0
\(959\) −56.0000 −1.80833
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 20.0000i 0.644491i
\(964\) 0 0
\(965\) 10.0000 + 20.0000i 0.321911 + 0.643823i
\(966\) 0 0
\(967\) 46.0000i 1.47926i 0.673014 + 0.739630i \(0.265000\pi\)
−0.673014 + 0.739630i \(0.735000\pi\)
\(968\) 0 0
\(969\) −4.00000 −0.128499
\(970\) 0 0
\(971\) 24.0000 0.770197 0.385098 0.922876i \(-0.374168\pi\)
0.385098 + 0.922876i \(0.374168\pi\)
\(972\) 0 0
\(973\) 64.0000i 2.05175i
\(974\) 0 0
\(975\) −12.0000 + 16.0000i −0.384308 + 0.512410i
\(976\) 0 0
\(977\) 2.00000i 0.0639857i 0.999488 + 0.0319928i \(0.0101854\pi\)
−0.999488 + 0.0319928i \(0.989815\pi\)
\(978\) 0 0
\(979\) −12.0000 −0.383522
\(980\) 0 0
\(981\) −6.00000 −0.191565
\(982\) 0 0
\(983\) 32.0000i 1.02064i −0.859984 0.510321i \(-0.829527\pi\)
0.859984 0.510321i \(-0.170473\pi\)
\(984\) 0 0
\(985\) −6.00000 12.0000i −0.191176 0.382352i
\(986\) 0 0
\(987\) 48.0000i 1.52786i
\(988\) 0 0
\(989\) 48.0000 1.52631
\(990\) 0 0
\(991\) 20.0000 0.635321 0.317660 0.948205i \(-0.397103\pi\)
0.317660 + 0.948205i \(0.397103\pi\)
\(992\) 0 0
\(993\) 4.00000i 0.126936i
\(994\) 0 0
\(995\) 8.00000 4.00000i 0.253617 0.126809i
\(996\) 0 0
\(997\) 6.00000i 0.190022i −0.995476 0.0950110i \(-0.969711\pi\)
0.995476 0.0950110i \(-0.0302886\pi\)
\(998\) 0 0
\(999\) 2.00000 0.0632772
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4080.2.m.k.2449.1 2
4.3 odd 2 2040.2.m.g.409.2 yes 2
5.4 even 2 inner 4080.2.m.k.2449.2 2
20.19 odd 2 2040.2.m.g.409.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2040.2.m.g.409.1 2 20.19 odd 2
2040.2.m.g.409.2 yes 2 4.3 odd 2
4080.2.m.k.2449.1 2 1.1 even 1 trivial
4080.2.m.k.2449.2 2 5.4 even 2 inner