L(s) = 1 | + 4·5-s − 9-s − 4·11-s − 8·19-s + 11·25-s + 16·29-s + 8·31-s − 4·45-s + 14·49-s − 16·55-s + 8·59-s + 20·61-s + 12·71-s + 32·79-s + 81-s + 12·89-s − 32·95-s + 4·99-s − 4·101-s + 12·109-s − 10·121-s + 24·125-s + 127-s + 131-s + 137-s + 139-s + 64·145-s + ⋯ |
L(s) = 1 | + 1.78·5-s − 1/3·9-s − 1.20·11-s − 1.83·19-s + 11/5·25-s + 2.97·29-s + 1.43·31-s − 0.596·45-s + 2·49-s − 2.15·55-s + 1.04·59-s + 2.56·61-s + 1.42·71-s + 3.60·79-s + 1/9·81-s + 1.27·89-s − 3.28·95-s + 0.402·99-s − 0.398·101-s + 1.14·109-s − 0.909·121-s + 2.14·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 5.31·145-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16646400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(4.542866921\) |
\(L(\frac12)\) |
\(\approx\) |
\(4.542866921\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.538043590169387456704371704897, −8.357529104628115459573030187177, −8.018637310478987892033370438127, −7.63617593435672316809695127655, −6.85868350287853257196638274739, −6.64296194617510584936766938181, −6.45945106189269409065848371080, −6.16795502775914991868858555203, −5.47973309338948041551610675089, −5.44089513371555716876276712889, −4.83298792426919868329053953347, −4.73576131756657731109615316811, −4.09725575947784650591375236852, −3.61090060798732348258679260187, −2.87067060393959220606170846166, −2.59141248744084903569790550375, −2.19108560478946047283494081559, −2.08628701764427572998960436329, −0.880479173623765391177071728144, −0.78860445711744050515473495769,
0.78860445711744050515473495769, 0.880479173623765391177071728144, 2.08628701764427572998960436329, 2.19108560478946047283494081559, 2.59141248744084903569790550375, 2.87067060393959220606170846166, 3.61090060798732348258679260187, 4.09725575947784650591375236852, 4.73576131756657731109615316811, 4.83298792426919868329053953347, 5.44089513371555716876276712889, 5.47973309338948041551610675089, 6.16795502775914991868858555203, 6.45945106189269409065848371080, 6.64296194617510584936766938181, 6.85868350287853257196638274739, 7.63617593435672316809695127655, 8.018637310478987892033370438127, 8.357529104628115459573030187177, 8.538043590169387456704371704897