| L(s) = 1 | − 2·4-s − 2·5-s + 2·7-s − 2·9-s + 4·11-s + 2·13-s + 4·16-s − 8·17-s − 6·19-s + 4·20-s + 10·23-s − 3·25-s − 4·28-s − 14·29-s + 14·31-s − 4·35-s + 4·36-s − 4·41-s − 2·43-s − 8·44-s + 4·45-s − 6·47-s + 3·49-s − 4·52-s − 6·53-s − 8·55-s + 4·61-s + ⋯ |
| L(s) = 1 | − 4-s − 0.894·5-s + 0.755·7-s − 2/3·9-s + 1.20·11-s + 0.554·13-s + 16-s − 1.94·17-s − 1.37·19-s + 0.894·20-s + 2.08·23-s − 3/5·25-s − 0.755·28-s − 2.59·29-s + 2.51·31-s − 0.676·35-s + 2/3·36-s − 0.624·41-s − 0.304·43-s − 1.20·44-s + 0.596·45-s − 0.875·47-s + 3/7·49-s − 0.554·52-s − 0.824·53-s − 1.07·55-s + 0.512·61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.8601618885, −13.5240709135, −13.3285947702, −12.6926896247, −12.4014804350, −11.5927992260, −11.3434326840, −11.2040338670, −10.7326741027, −9.97759541606, −9.38463950725, −8.96547406443, −8.73547122738, −8.14438866848, −8.02303408131, −7.14918000367, −6.48432181419, −6.37684020437, −5.34298608831, −4.95454046108, −4.23622923362, −4.04609643315, −3.39334742454, −2.38361565588, −1.35836937710, 0,
1.35836937710, 2.38361565588, 3.39334742454, 4.04609643315, 4.23622923362, 4.95454046108, 5.34298608831, 6.37684020437, 6.48432181419, 7.14918000367, 8.02303408131, 8.14438866848, 8.73547122738, 8.96547406443, 9.38463950725, 9.97759541606, 10.7326741027, 11.2040338670, 11.3434326840, 11.5927992260, 12.4014804350, 12.6926896247, 13.3285947702, 13.5240709135, 13.8601618885