Properties

Label 4-364e2-1.1-c1e2-0-8
Degree $4$
Conductor $132496$
Sign $-1$
Analytic cond. $8.44805$
Root an. cond. $1.70486$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $1$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·4-s − 2·5-s + 2·7-s − 2·9-s + 4·11-s + 2·13-s + 4·16-s − 8·17-s − 6·19-s + 4·20-s + 10·23-s − 3·25-s − 4·28-s − 14·29-s + 14·31-s − 4·35-s + 4·36-s − 4·41-s − 2·43-s − 8·44-s + 4·45-s − 6·47-s + 3·49-s − 4·52-s − 6·53-s − 8·55-s + 4·61-s + ⋯
L(s)  = 1  − 4-s − 0.894·5-s + 0.755·7-s − 2/3·9-s + 1.20·11-s + 0.554·13-s + 16-s − 1.94·17-s − 1.37·19-s + 0.894·20-s + 2.08·23-s − 3/5·25-s − 0.755·28-s − 2.59·29-s + 2.51·31-s − 0.676·35-s + 2/3·36-s − 0.624·41-s − 0.304·43-s − 1.20·44-s + 0.596·45-s − 0.875·47-s + 3/7·49-s − 0.554·52-s − 0.824·53-s − 1.07·55-s + 0.512·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 132496 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(132496\)    =    \(2^{4} \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(8.44805\)
Root analytic conductor: \(1.70486\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((4,\ 132496,\ (\ :1/2, 1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2$C_2$ \( 1 + p T^{2} \)
7$C_1$ \( ( 1 - T )^{2} \)
13$C_1$ \( ( 1 - T )^{2} \)
good3$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.3.a_c
5$C_2$$\times$$C_2$ \( ( 1 - T + p T^{2} )( 1 + 3 T + p T^{2} ) \) 2.5.c_h
11$C_2$$\times$$C_2$ \( ( 1 - 4 T + p T^{2} )( 1 + p T^{2} ) \) 2.11.ae_w
17$C_2$$\times$$C_2$ \( ( 1 + 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.17.i_bu
19$C_2$ \( ( 1 - T + p T^{2} )( 1 + 7 T + p T^{2} ) \) 2.19.g_bf
23$C_2$$\times$$C_2$ \( ( 1 - 7 T + p T^{2} )( 1 - 3 T + p T^{2} ) \) 2.23.ak_cp
29$C_2$$\times$$C_2$ \( ( 1 + 5 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.29.o_dz
31$C_2$$\times$$C_2$ \( ( 1 - 9 T + p T^{2} )( 1 - 5 T + p T^{2} ) \) 2.31.ao_ed
37$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 2 T + p T^{2} ) \) 2.37.a_cs
41$C_2$$\times$$C_2$ \( ( 1 - 2 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.41.e_cs
43$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.43.c_dj
47$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.47.g_cp
53$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.53.g_db
59$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.59.a_eo
61$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.61.ae_as
67$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 10 T + p T^{2} ) \) 2.67.ae_ag
71$C_2$$\times$$C_2$ \( ( 1 - 14 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.71.ai_cg
73$C_2$$\times$$C_2$ \( ( 1 - 11 T + p T^{2} )( 1 - 3 T + p T^{2} ) \) 2.73.ao_gx
79$C_2$$\times$$C_2$ \( ( 1 + T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.79.g_gh
83$C_2$$\times$$C_2$ \( ( 1 - 3 T + p T^{2} )( 1 + 5 T + p T^{2} ) \) 2.83.c_fv
89$C_2$$\times$$C_2$ \( ( 1 - 15 T + p T^{2} )( 1 + 9 T + p T^{2} ) \) 2.89.ag_br
97$C_2$ \( ( 1 + T + p T^{2} )^{2} \) 2.97.c_hn
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.8601618885, −13.5240709135, −13.3285947702, −12.6926896247, −12.4014804350, −11.5927992260, −11.3434326840, −11.2040338670, −10.7326741027, −9.97759541606, −9.38463950725, −8.96547406443, −8.73547122738, −8.14438866848, −8.02303408131, −7.14918000367, −6.48432181419, −6.37684020437, −5.34298608831, −4.95454046108, −4.23622923362, −4.04609643315, −3.39334742454, −2.38361565588, −1.35836937710, 0, 1.35836937710, 2.38361565588, 3.39334742454, 4.04609643315, 4.23622923362, 4.95454046108, 5.34298608831, 6.37684020437, 6.48432181419, 7.14918000367, 8.02303408131, 8.14438866848, 8.73547122738, 8.96547406443, 9.38463950725, 9.97759541606, 10.7326741027, 11.2040338670, 11.3434326840, 11.5927992260, 12.4014804350, 12.6926896247, 13.3285947702, 13.5240709135, 13.8601618885

Graph of the $Z$-function along the critical line