L(s) = 1 | − 4-s + 2·13-s − 3·16-s − 3·23-s − 25-s − 15·29-s − 8·43-s + 2·49-s − 2·52-s − 5·61-s + 7·64-s + 7·79-s + 3·92-s + 100-s − 6·101-s + 7·103-s − 18·107-s − 12·113-s + 15·116-s + 8·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + ⋯ |
L(s) = 1 | − 1/2·4-s + 0.554·13-s − 3/4·16-s − 0.625·23-s − 1/5·25-s − 2.78·29-s − 1.21·43-s + 2/7·49-s − 0.277·52-s − 0.640·61-s + 7/8·64-s + 0.787·79-s + 0.312·92-s + 1/10·100-s − 0.597·101-s + 0.689·103-s − 1.74·107-s − 1.12·113-s + 1.39·116-s + 8/11·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 123201 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.105675264521832381983653615570, −8.899702461015159206725562790396, −8.122768408265860444734454425224, −7.83892606478377834130552153706, −7.23361567491057064981729992851, −6.66218270619862247635351487382, −6.17581367096526111799604391772, −5.47922211471740807769800147288, −5.18740085196123923769509184536, −4.31482067778899198564235868564, −3.90709927363477401840366602672, −3.33073065016862403926778738980, −2.32140469697422943102215446629, −1.58515090935433547270806176250, 0,
1.58515090935433547270806176250, 2.32140469697422943102215446629, 3.33073065016862403926778738980, 3.90709927363477401840366602672, 4.31482067778899198564235868564, 5.18740085196123923769509184536, 5.47922211471740807769800147288, 6.17581367096526111799604391772, 6.66218270619862247635351487382, 7.23361567491057064981729992851, 7.83892606478377834130552153706, 8.122768408265860444734454425224, 8.899702461015159206725562790396, 9.105675264521832381983653615570