| L(s) = 1 | − 4·3-s − 4·5-s + 8·9-s − 4·11-s + 16·15-s + 2·17-s − 8·23-s + 11·25-s − 12·27-s − 10·29-s + 8·31-s + 16·33-s − 10·37-s − 10·41-s − 8·43-s − 32·45-s − 8·51-s − 12·53-s + 16·55-s + 6·61-s + 32·69-s − 16·71-s + 2·73-s − 44·75-s − 24·79-s + 23·81-s − 8·83-s + ⋯ |
| L(s) = 1 | − 2.30·3-s − 1.78·5-s + 8/3·9-s − 1.20·11-s + 4.13·15-s + 0.485·17-s − 1.66·23-s + 11/5·25-s − 2.30·27-s − 1.85·29-s + 1.43·31-s + 2.78·33-s − 1.64·37-s − 1.56·41-s − 1.21·43-s − 4.77·45-s − 1.12·51-s − 1.64·53-s + 2.15·55-s + 0.768·61-s + 3.85·69-s − 1.89·71-s + 0.234·73-s − 5.08·75-s − 2.70·79-s + 23/9·81-s − 0.878·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 115600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.29957606844196519832084896360, −11.27877107106160947426840637420, −10.30870786522520614474114308341, −10.23963843090607582441883671405, −9.930100107253317759111131801498, −8.745592747279040947137132402334, −8.414237457210297435637075050986, −7.84685051837060851989525114925, −7.34155188480238317660416460722, −7.10101440436162860210972239989, −6.22461688446445329395810245473, −5.98814480210351023139675906912, −5.17548995543424279969540039162, −5.06220456657421976569839831891, −4.34851692528485469154626832774, −3.73238614945087440962825918891, −3.07899505296726618871721097361, −1.64123951760712376090462431056, 0, 0,
1.64123951760712376090462431056, 3.07899505296726618871721097361, 3.73238614945087440962825918891, 4.34851692528485469154626832774, 5.06220456657421976569839831891, 5.17548995543424279969540039162, 5.98814480210351023139675906912, 6.22461688446445329395810245473, 7.10101440436162860210972239989, 7.34155188480238317660416460722, 7.84685051837060851989525114925, 8.414237457210297435637075050986, 8.745592747279040947137132402334, 9.930100107253317759111131801498, 10.23963843090607582441883671405, 10.30870786522520614474114308341, 11.27877107106160947426840637420, 11.29957606844196519832084896360