Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 10 x + 50 x^{2} + 410 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.436195342855$, $\pm0.936195342855$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{57})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $32$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2152$ | $2823424$ | $4800683752$ | $7971723083776$ | $13421900473480552$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $1682$ | $69652$ | $2821086$ | $115849652$ | $4750104242$ | $194755291412$ | $7984925599678$ | $327381890822452$ | $13422659310152402$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=40 x^6+9 x^5+4 x^4+19 x^3+9 x^2+10 x+29$
- $y^2=30 x^6+14 x^5+10 x^4+38 x^3+32 x^2+17 x+38$
- $y^2=30 x^6+37 x^5+24 x^4+24 x^3+13 x^2+23 x+33$
- $y^2=38 x^6+7 x^5+36 x^4+4 x^3+33 x^2+27 x+21$
- $y^2=18 x^6+21 x^5+28 x^4+8 x^3+27 x^2+32 x+20$
- $y^2=10 x^6+27 x^5+28 x^4+31 x^3+6 x^2+16 x+40$
- $y^2=x^6+11 x^5+37 x^4+33 x^3+15 x^2+33 x+28$
- $y^2=26 x^5+15 x^4+6 x^3+24 x^2+22 x+14$
- $y^2=38 x^6+21 x^5+35 x^4+33 x^3+38 x^2+3 x+19$
- $y^2=26 x^6+28 x^5+4 x^4+3 x^3+29 x^2+29 x+36$
- $y^2=20 x^5+23 x^4+20 x^3+37 x^2+7 x+33$
- $y^2=26 x^6+17 x^5+19 x^4+3 x^3+28 x^2+24 x+7$
- $y^2=9 x^6+30 x^5+24 x^4+28 x^3+15 x+9$
- $y^2=38 x^6+9 x^5+11 x^4+27 x^3+40 x^2+25 x+40$
- $y^2=14 x^6+31 x^5+27 x^4+27 x^3+25 x^2+13 x+24$
- $y^2=32 x^6+25 x^5+2 x^4+4 x^3+22 x^2+35 x+6$
- $y^2=40 x^6+30 x^5+12 x^4+12 x^2+11 x+40$
- $y^2=29 x^6+34 x^5+35 x^4+24 x^3+35 x^2+40 x+32$
- $y^2=2 x^6+8 x^5+8 x^4+7 x^3+19 x^2+39 x+16$
- $y^2=31 x^6+9 x^5+33 x^4+6 x^3+28 x^2+16 x+40$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41^{4}}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{57})\). |
| The base change of $A$ to $\F_{41^{4}}$ is 1.2825761.adly 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-57}) \)$)$ |
- Endomorphism algebra over $\F_{41^{2}}$
The base change of $A$ to $\F_{41^{2}}$ is the simple isogeny class 2.1681.a_adly and its endomorphism algebra is \(\Q(i, \sqrt{57})\).
Base change
This is a primitive isogeny class.