Properties

Label 4-3240e2-1.1-c1e2-0-16
Degree $4$
Conductor $10497600$
Sign $1$
Analytic cond. $669.336$
Root an. cond. $5.08640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 4·11-s − 4·19-s − 25-s + 14·29-s − 12·31-s + 10·41-s + 13·49-s − 8·55-s + 24·59-s − 14·61-s − 20·71-s − 8·79-s + 30·89-s + 8·95-s + 36·101-s + 18·109-s − 10·121-s + 12·125-s + 127-s + 131-s + 137-s + 139-s − 28·145-s + 149-s + 151-s + 24·155-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.20·11-s − 0.917·19-s − 1/5·25-s + 2.59·29-s − 2.15·31-s + 1.56·41-s + 13/7·49-s − 1.07·55-s + 3.12·59-s − 1.79·61-s − 2.37·71-s − 0.900·79-s + 3.17·89-s + 0.820·95-s + 3.58·101-s + 1.72·109-s − 0.909·121-s + 1.07·125-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s − 2.32·145-s + 0.0819·149-s + 0.0813·151-s + 1.92·155-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10497600 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(10497600\)    =    \(2^{6} \cdot 3^{8} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(669.336\)
Root analytic conductor: \(5.08640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 10497600,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.360537683\)
\(L(\frac12)\) \(\approx\) \(2.360537683\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( 1 + 2 T + p T^{2} \)
good7$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 2 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 - 22 T^{2} + p^{2} T^{4} \)
17$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \)
19$C_2$ \( ( 1 + 2 T + p T^{2} )^{2} \)
23$C_2^2$ \( 1 - 45 T^{2} + p^{2} T^{4} \)
29$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \)
31$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \)
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \)
41$C_2$ \( ( 1 - 5 T + p T^{2} )^{2} \)
43$C_2^2$ \( 1 + 58 T^{2} + p^{2} T^{4} \)
47$C_2^2$ \( 1 - 13 T^{2} + p^{2} T^{4} \)
53$C_2^2$ \( 1 - 42 T^{2} + p^{2} T^{4} \)
59$C_2$ \( ( 1 - 12 T + p T^{2} )^{2} \)
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \)
67$C_2^2$ \( 1 - 109 T^{2} + p^{2} T^{4} \)
71$C_2$ \( ( 1 + 10 T + p T^{2} )^{2} \)
73$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \)
79$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
83$C_2^2$ \( 1 - 141 T^{2} + p^{2} T^{4} \)
89$C_2$ \( ( 1 - 15 T + p T^{2} )^{2} \)
97$C_2^2$ \( 1 + 62 T^{2} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.688697550528906421703855723760, −8.681219298728717122003589845683, −8.106324933181246073271535891830, −7.63908301867832351629288871846, −7.36708139987818038339714872553, −7.07711825669967354336044817363, −6.59139920759231274892026945146, −6.28039624078053686812626798589, −5.75484881076922668375601454728, −5.63931910241735834882935539007, −4.77855225979936868094672047421, −4.54686052722220136967113920059, −4.09481503051361900507466022365, −3.92407203689559373377488182881, −3.26151904876089954673208357998, −3.00250387261997784144413529995, −2.10543357778851679743634363863, −1.97419906298211168993612599406, −0.955520220371236636751676724623, −0.59271170599321519961571695133, 0.59271170599321519961571695133, 0.955520220371236636751676724623, 1.97419906298211168993612599406, 2.10543357778851679743634363863, 3.00250387261997784144413529995, 3.26151904876089954673208357998, 3.92407203689559373377488182881, 4.09481503051361900507466022365, 4.54686052722220136967113920059, 4.77855225979936868094672047421, 5.63931910241735834882935539007, 5.75484881076922668375601454728, 6.28039624078053686812626798589, 6.59139920759231274892026945146, 7.07711825669967354336044817363, 7.36708139987818038339714872553, 7.63908301867832351629288871846, 8.106324933181246073271535891830, 8.681219298728717122003589845683, 8.688697550528906421703855723760

Graph of the $Z$-function along the critical line