Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 45 x^{2} + 529 x^{4}$ |
| Frobenius angles: | $\pm0.0332465154297$, $\pm0.966753484570$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{91})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $0$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $485$ | $235225$ | $148016180$ | $77771265625$ | $41426504746925$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $24$ | $440$ | $12168$ | $277908$ | $6436344$ | $147996470$ | $3404825448$ | $78310234468$ | $1801152661464$ | $41426498280200$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23^{2}}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{91})\). |
| The base change of $A$ to $\F_{23^{2}}$ is 1.529.abt 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.