L(s) = 1 | + 5·7-s − 9·13-s − 3·17-s + 19-s + 7·25-s + 9·29-s + 8·31-s + 11·37-s + 3·41-s + 15·43-s + 12·47-s + 18·49-s − 3·53-s − 12·59-s − 6·67-s − 21·73-s + 18·79-s + 9·83-s + 9·89-s − 45·91-s − 3·97-s + 14·103-s + 21·107-s − 5·109-s + 15·113-s − 15·119-s − 5·121-s + ⋯ |
L(s) = 1 | + 1.88·7-s − 2.49·13-s − 0.727·17-s + 0.229·19-s + 7/5·25-s + 1.67·29-s + 1.43·31-s + 1.80·37-s + 0.468·41-s + 2.28·43-s + 1.75·47-s + 18/7·49-s − 0.412·53-s − 1.56·59-s − 0.733·67-s − 2.45·73-s + 2.02·79-s + 0.987·83-s + 0.953·89-s − 4.71·91-s − 0.304·97-s + 1.37·103-s + 2.03·107-s − 0.478·109-s + 1.41·113-s − 1.37·119-s − 0.454·121-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9144576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.787624378\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.787624378\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.764777677888296816166031166533, −8.709017424301674372952073582497, −7.938607663679103672611090630952, −7.79236580921147253443676559403, −7.43806587835788716755593085354, −7.32027671286011565821919674474, −6.69055022127250126384016668605, −6.18542290816015122340750829361, −5.95353079476899549047780687450, −5.27370900823380735123599269235, −4.86703173852373272067892561903, −4.68594982752758964548158344186, −4.39864090089046212342919078238, −4.14718298362389576753381181831, −3.00001221276133776245267245096, −2.73678275423503414787766222719, −2.38370738715961523087949759289, −1.96205609745811646484540015950, −0.989867951004460234064315010659, −0.76289355498653388296075412773,
0.76289355498653388296075412773, 0.989867951004460234064315010659, 1.96205609745811646484540015950, 2.38370738715961523087949759289, 2.73678275423503414787766222719, 3.00001221276133776245267245096, 4.14718298362389576753381181831, 4.39864090089046212342919078238, 4.68594982752758964548158344186, 4.86703173852373272067892561903, 5.27370900823380735123599269235, 5.95353079476899549047780687450, 6.18542290816015122340750829361, 6.69055022127250126384016668605, 7.32027671286011565821919674474, 7.43806587835788716755593085354, 7.79236580921147253443676559403, 7.938607663679103672611090630952, 8.709017424301674372952073582497, 8.764777677888296816166031166533