Properties

Label 4-2700e2-1.1-c1e2-0-14
Degree $4$
Conductor $7290000$
Sign $1$
Analytic cond. $464.816$
Root an. cond. $4.64323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 12·11-s + 14·19-s − 14·31-s − 12·41-s − 2·49-s − 24·59-s − 14·61-s − 12·71-s + 2·79-s − 12·89-s − 24·101-s − 10·109-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + ⋯
L(s)  = 1  − 3.61·11-s + 3.21·19-s − 2.51·31-s − 1.87·41-s − 2/7·49-s − 3.12·59-s − 1.79·61-s − 1.42·71-s + 0.225·79-s − 1.27·89-s − 2.38·101-s − 0.957·109-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(7290000\)    =    \(2^{4} \cdot 3^{6} \cdot 5^{4}\)
Sign: $1$
Analytic conductor: \(464.816\)
Root analytic conductor: \(4.64323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 7290000,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7$C_2^2$ \( 1 + 2 T^{2} + p^{2} T^{4} \) 2.7.a_c
11$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.11.m_cg
13$C_2$ \( ( 1 - 6 T + p T^{2} )( 1 + 6 T + p T^{2} ) \) 2.13.a_ak
17$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \) 2.17.a_az
19$C_2$ \( ( 1 - 7 T + p T^{2} )^{2} \) 2.19.ao_dj
23$C_2^2$ \( 1 + 35 T^{2} + p^{2} T^{4} \) 2.23.a_bj
29$C_2$ \( ( 1 + p T^{2} )^{2} \) 2.29.a_cg
31$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \) 2.31.o_eh
37$C_2$ \( ( 1 - 12 T + p T^{2} )( 1 + 12 T + p T^{2} ) \) 2.37.a_acs
41$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.41.m_eo
43$C_2^2$ \( 1 - 82 T^{2} + p^{2} T^{4} \) 2.43.a_ade
47$C_2$ \( ( 1 - p T^{2} )^{2} \) 2.47.a_adq
53$C_2^2$ \( 1 - 25 T^{2} + p^{2} T^{4} \) 2.53.a_az
59$C_2$ \( ( 1 + 12 T + p T^{2} )^{2} \) 2.59.y_kc
61$C_2$ \( ( 1 + 7 T + p T^{2} )^{2} \) 2.61.o_gp
67$C_2^2$ \( 1 - 130 T^{2} + p^{2} T^{4} \) 2.67.a_afa
71$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.71.m_gw
73$C_2^2$ \( 1 - 142 T^{2} + p^{2} T^{4} \) 2.73.a_afm
79$C_2$ \( ( 1 - T + p T^{2} )^{2} \) 2.79.ac_gd
83$C_2^2$ \( 1 - 85 T^{2} + p^{2} T^{4} \) 2.83.a_adh
89$C_2$ \( ( 1 + 6 T + p T^{2} )^{2} \) 2.89.m_ig
97$C_2$ \( ( 1 - 18 T + p T^{2} )( 1 + 18 T + p T^{2} ) \) 2.97.a_afa
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.448256394453675915105094268733, −8.250291085340585587247314030202, −7.71787410308609866490536306678, −7.56523375781758488325644225583, −7.29410198358181911079706203638, −7.07326090644926444111319389352, −6.17054588845563049310059357245, −5.78790221478801988402491448720, −5.44760221716614385676235217505, −5.12619567431031463841535205410, −5.00431193121033736073709868254, −4.47546392109458353031834745874, −3.59667474284058358323643278848, −3.21518374093782558734163368682, −2.93551248908926758209320965442, −2.60650607814006130489689815032, −1.75874636376727431618080420984, −1.35894413706850220747878729608, 0, 0, 1.35894413706850220747878729608, 1.75874636376727431618080420984, 2.60650607814006130489689815032, 2.93551248908926758209320965442, 3.21518374093782558734163368682, 3.59667474284058358323643278848, 4.47546392109458353031834745874, 5.00431193121033736073709868254, 5.12619567431031463841535205410, 5.44760221716614385676235217505, 5.78790221478801988402491448720, 6.17054588845563049310059357245, 7.07326090644926444111319389352, 7.29410198358181911079706203638, 7.56523375781758488325644225583, 7.71787410308609866490536306678, 8.250291085340585587247314030202, 8.448256394453675915105094268733

Graph of the $Z$-function along the critical line