L(s) = 1 | − 12·11-s + 14·19-s − 14·31-s − 12·41-s − 2·49-s − 24·59-s − 14·61-s − 12·71-s + 2·79-s − 12·89-s − 24·101-s − 10·109-s + 86·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s + 10·169-s + 173-s + 179-s + 181-s + 191-s + ⋯ |
L(s) = 1 | − 3.61·11-s + 3.21·19-s − 2.51·31-s − 1.87·41-s − 2/7·49-s − 3.12·59-s − 1.79·61-s − 1.42·71-s + 0.225·79-s − 1.27·89-s − 2.38·101-s − 0.957·109-s + 7.81·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 0.769·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7290000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.448256394453675915105094268733, −8.250291085340585587247314030202, −7.71787410308609866490536306678, −7.56523375781758488325644225583, −7.29410198358181911079706203638, −7.07326090644926444111319389352, −6.17054588845563049310059357245, −5.78790221478801988402491448720, −5.44760221716614385676235217505, −5.12619567431031463841535205410, −5.00431193121033736073709868254, −4.47546392109458353031834745874, −3.59667474284058358323643278848, −3.21518374093782558734163368682, −2.93551248908926758209320965442, −2.60650607814006130489689815032, −1.75874636376727431618080420984, −1.35894413706850220747878729608, 0, 0,
1.35894413706850220747878729608, 1.75874636376727431618080420984, 2.60650607814006130489689815032, 2.93551248908926758209320965442, 3.21518374093782558734163368682, 3.59667474284058358323643278848, 4.47546392109458353031834745874, 5.00431193121033736073709868254, 5.12619567431031463841535205410, 5.44760221716614385676235217505, 5.78790221478801988402491448720, 6.17054588845563049310059357245, 7.07326090644926444111319389352, 7.29410198358181911079706203638, 7.56523375781758488325644225583, 7.71787410308609866490536306678, 8.250291085340585587247314030202, 8.448256394453675915105094268733