L(s) = 1 | − 4·7-s − 4·9-s + 4·17-s + 8·19-s + 8·23-s − 2·25-s − 8·29-s − 8·31-s − 2·41-s − 8·43-s − 4·47-s − 24·53-s + 8·59-s − 12·61-s + 16·63-s + 8·67-s − 4·71-s − 16·73-s − 12·79-s + 7·81-s − 24·83-s − 12·89-s − 4·97-s + 24·101-s − 8·103-s − 24·107-s − 24·109-s + ⋯ |
L(s) = 1 | − 1.51·7-s − 4/3·9-s + 0.970·17-s + 1.83·19-s + 1.66·23-s − 2/5·25-s − 1.48·29-s − 1.43·31-s − 0.312·41-s − 1.21·43-s − 0.583·47-s − 3.29·53-s + 1.04·59-s − 1.53·61-s + 2.01·63-s + 0.977·67-s − 0.474·71-s − 1.87·73-s − 1.35·79-s + 7/9·81-s − 2.63·83-s − 1.27·89-s − 0.406·97-s + 2.38·101-s − 0.788·103-s − 2.32·107-s − 2.29·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6885376 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.556663041382392756824714247761, −8.541953787527448209707744874318, −7.73470141730220440928295714203, −7.59905730042992697795225257523, −7.17955866304031337127281458626, −6.77397563821530031645039736757, −6.36181881034977596301464660938, −5.91484347307399301489398802493, −5.56238622689542331379141783845, −5.26578949564423614388484675900, −4.98569948500582184650356251287, −4.18983320898763646485839476448, −3.61035793175281693608996000809, −3.23500739525930494639628431598, −2.91597186512198263584908459667, −2.89162544690013129044783400702, −1.59240422266468154245190160125, −1.39879954868112891871178418409, 0, 0,
1.39879954868112891871178418409, 1.59240422266468154245190160125, 2.89162544690013129044783400702, 2.91597186512198263584908459667, 3.23500739525930494639628431598, 3.61035793175281693608996000809, 4.18983320898763646485839476448, 4.98569948500582184650356251287, 5.26578949564423614388484675900, 5.56238622689542331379141783845, 5.91484347307399301489398802493, 6.36181881034977596301464660938, 6.77397563821530031645039736757, 7.17955866304031337127281458626, 7.59905730042992697795225257523, 7.73470141730220440928295714203, 8.541953787527448209707744874318, 8.556663041382392756824714247761