Invariants
Base field: | $\F_{29}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 42 x^{2} + 232 x^{3} + 841 x^{4}$ |
Frobenius angles: | $\pm0.450837558195$, $\pm0.853982294603$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.41216.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1124$ | $723856$ | $599758532$ | $499588038656$ | $420454778913124$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $38$ | $862$ | $24590$ | $706350$ | $20498838$ | $594897742$ | $17249846078$ | $500247169374$ | $14507134283270$ | $420707239498302$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=7 x^6+28 x^5+12 x^4+9 x^3+19 x+21$
- $y^2=26 x^6+27 x^5+16 x^4+9 x^3+14 x^2+18 x+26$
- $y^2=22 x^6+19 x^5+3 x^4+8 x^3+3 x^2+22 x+22$
- $y^2=x^5+10 x^4+19 x^3+14 x^2+3 x+6$
- $y^2=23 x^6+8 x^5+13 x^4+6 x^3+9 x^2+23 x+16$
- $y^2=5 x^5+22 x^4+11 x^3+5 x^2+23 x+14$
- $y^2=21 x^6+26 x^5+12 x^4+3 x^3+4 x^2+10 x+7$
- $y^2=28 x^6+3 x^4+4 x^3+8 x^2+16 x+4$
- $y^2=11 x^6+6 x^5+28 x^4+4 x^3+28 x^2+12 x+23$
- $y^2=12 x^6+22 x^5+6 x^4+12 x^3+5 x+17$
- $y^2=5 x^6+28 x^5+16 x^4+11 x^3+23 x^2+11 x+28$
- $y^2=22 x^6+8 x^5+6 x^4+5 x^3+25 x^2+7 x+7$
- $y^2=11 x^6+13 x^5+10 x^4+14 x^3+2 x^2+19$
- $y^2=5 x^6+23 x^5+18 x^4+18 x^3+15 x^2+5 x+9$
- $y^2=2 x^6+27 x^5+19 x^4+10 x^3+18 x^2+24 x+28$
- $y^2=5 x^6+3 x^5+12 x^4+8 x^3+11 x^2+18 x+1$
- $y^2=22 x^5+11 x^4+20 x^3+3 x^2+4$
- $y^2=27 x^6+10 x^5+4 x^4+26 x^3+13 x^2+19 x+1$
- $y^2=25 x^6+12 x^5+18 x^4+28 x^2+27$
- $y^2=15 x^6+19 x^5+10 x^3+16 x^2+4 x+26$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{29}$.
Endomorphism algebra over $\F_{29}$The endomorphism algebra of this simple isogeny class is 4.0.41216.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.29.ai_bq | $2$ | (not in LMFDB) |