L(s) = 1 | − 4-s − 2·5-s + 9-s + 2·11-s + 16-s + 2·20-s − 2·23-s + 2·25-s + 8·31-s − 36-s − 6·37-s − 2·44-s − 2·45-s + 8·47-s − 2·49-s + 4·53-s − 4·55-s + 18·59-s − 64-s + 4·67-s − 2·80-s + 81-s + 14·89-s + 2·92-s + 2·99-s − 2·100-s − 16·103-s + ⋯ |
L(s) = 1 | − 1/2·4-s − 0.894·5-s + 1/3·9-s + 0.603·11-s + 1/4·16-s + 0.447·20-s − 0.417·23-s + 2/5·25-s + 1.43·31-s − 1/6·36-s − 0.986·37-s − 0.301·44-s − 0.298·45-s + 1.16·47-s − 2/7·49-s + 0.549·53-s − 0.539·55-s + 2.34·59-s − 1/8·64-s + 0.488·67-s − 0.223·80-s + 1/9·81-s + 1.48·89-s + 0.208·92-s + 0.201·99-s − 1/5·100-s − 1.57·103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5963364 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.719538192\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.719538192\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.13177316140564855614140385449, −6.85386186979449429857342839229, −6.61584133798298695423464441160, −6.03491195581629744691228448953, −5.49582489298661908936756052615, −5.25255484691773420887169977281, −4.65605117790123903931376850521, −4.22785710959710160762186262862, −3.99086438363092641803356193680, −3.57703391521000060641800902114, −3.04019693838766176747399595911, −2.45187002292227506006957788256, −1.84911971324680938644948352520, −1.06383159783776234448266791228, −0.53248373691956833641989142458,
0.53248373691956833641989142458, 1.06383159783776234448266791228, 1.84911971324680938644948352520, 2.45187002292227506006957788256, 3.04019693838766176747399595911, 3.57703391521000060641800902114, 3.99086438363092641803356193680, 4.22785710959710160762186262862, 4.65605117790123903931376850521, 5.25255484691773420887169977281, 5.49582489298661908936756052615, 6.03491195581629744691228448953, 6.61584133798298695423464441160, 6.85386186979449429857342839229, 7.13177316140564855614140385449