L(s) = 1 | − 2·2-s + 3·4-s − 5·5-s + 7-s − 4·8-s + 10·10-s − 2·13-s − 2·14-s + 5·16-s + 8·17-s − 2·19-s − 15·20-s − 2·23-s + 10·25-s + 4·26-s + 3·28-s + 7·29-s − 9·31-s − 6·32-s − 16·34-s − 5·35-s + 4·38-s + 20·40-s + 2·41-s + 14·43-s + 4·46-s − 8·47-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 3/2·4-s − 2.23·5-s + 0.377·7-s − 1.41·8-s + 3.16·10-s − 0.554·13-s − 0.534·14-s + 5/4·16-s + 1.94·17-s − 0.458·19-s − 3.35·20-s − 0.417·23-s + 2·25-s + 0.784·26-s + 0.566·28-s + 1.29·29-s − 1.61·31-s − 1.06·32-s − 2.74·34-s − 0.845·35-s + 0.648·38-s + 3.16·40-s + 0.312·41-s + 2.13·43-s + 0.589·46-s − 1.16·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4743684 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.571398442519576546056692239195, −8.554249577586263838823781824123, −7.87702622378431927324424085616, −7.85155624215270234280771821053, −7.57386470102065008208215169188, −7.29400151503876532568419346440, −6.77639687071162104883806533466, −6.28675156989284991106500874141, −5.78055161833745351513169734293, −5.40683831816905627277194622741, −4.65910799135667981865031811685, −4.42561196718115706859328031311, −3.82544608105155173245846654480, −3.43120500942823317569811546868, −2.96628642418390958624647178880, −2.50782400879846964844710278097, −1.48912394830043730580450194365, −1.22839740464310038520551603811, 0, 0,
1.22839740464310038520551603811, 1.48912394830043730580450194365, 2.50782400879846964844710278097, 2.96628642418390958624647178880, 3.43120500942823317569811546868, 3.82544608105155173245846654480, 4.42561196718115706859328031311, 4.65910799135667981865031811685, 5.40683831816905627277194622741, 5.78055161833745351513169734293, 6.28675156989284991106500874141, 6.77639687071162104883806533466, 7.29400151503876532568419346440, 7.57386470102065008208215169188, 7.85155624215270234280771821053, 7.87702622378431927324424085616, 8.554249577586263838823781824123, 8.571398442519576546056692239195