Invariants
Base field: | $\F_{79}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 7 x + 159 x^{2} - 553 x^{3} + 6241 x^{4}$ |
Frobenius angles: | $\pm0.374003668091$, $\pm0.497387472318$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.2125125.1 |
Galois group: | $D_{4}$ |
Jacobians: | $112$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5841$ | $40659201$ | $243747681111$ | $1516629059797005$ | $9467948776601017296$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $73$ | $6511$ | $494377$ | $38937763$ | $3076950028$ | $243087730171$ | $19203912665227$ | $1517108810050003$ | $119851596214399303$ | $9468276084546946606$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=10 x^6+75 x^5+24 x^4+44 x^3+75 x^2+39 x+25$
- $y^2=28 x^6+5 x^5+64 x^4+74 x^3+36 x^2+24 x+32$
- $y^2=14 x^6+62 x^5+18 x^4+62 x^3+24 x^2+60 x$
- $y^2=2 x^6+48 x^5+3 x^4+65 x^3+56 x^2+8 x+66$
- $y^2=25 x^6+73 x^5+12 x^4+42 x^3+23 x^2+64 x+52$
- $y^2=77 x^6+16 x^5+23 x^4+52 x^3+39 x^2+13 x+70$
- $y^2=36 x^6+66 x^5+13 x^4+60 x^3+5 x^2+26 x+63$
- $y^2=5 x^6+2 x^5+43 x^4+46 x^3+56 x^2+38 x+52$
- $y^2=27 x^6+6 x^5+24 x^4+45 x^3+69 x^2+41 x+41$
- $y^2=50 x^6+32 x^5+19 x^4+46 x^3+27 x^2+75 x+50$
- $y^2=47 x^6+3 x^5+42 x^4+3 x^3+53 x^2+34 x+14$
- $y^2=62 x^6+77 x^5+32 x^4+39 x^3+13 x^2+73 x+33$
- $y^2=18 x^6+61 x^5+59 x^4+32 x^3+63 x^2+42 x+13$
- $y^2=66 x^6+50 x^5+5 x^4+17 x^3+42 x^2+25 x+13$
- $y^2=55 x^5+56 x^4+24 x^3+5 x^2+50 x+60$
- $y^2=61 x^6+77 x^5+21 x^4+34 x^3+5 x^2+50 x+7$
- $y^2=21 x^6+6 x^5+63 x^4+24 x^3+41 x^2+68 x+73$
- $y^2=41 x^6+60 x^5+21 x^4+51 x^3+44 x^2+44 x+51$
- $y^2=4 x^6+5 x^5+66 x^4+x^3+36 x^2+x+9$
- $y^2=12 x^6+15 x^5+53 x^4+37 x^3+7 x^2+11 x+13$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{79}$.
Endomorphism algebra over $\F_{79}$The endomorphism algebra of this simple isogeny class is 4.0.2125125.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.79.h_gd | $2$ | (not in LMFDB) |