Invariants
Base field: | $\F_{73}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 9 x + 65 x^{2} + 657 x^{3} + 5329 x^{4}$ |
Frobenius angles: | $\pm0.394464246972$, $\pm0.824728683136$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.521725.2 |
Galois group: | $D_{4}$ |
Jacobians: | $126$ |
Isomorphism classes: | 126 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $6061$ | $28662469$ | $151702520629$ | $806565575118501$ | $4297263062258569216$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $83$ | $5379$ | $389963$ | $28401955$ | $2072896598$ | $151334677923$ | $11047398353795$ | $806460159211459$ | $58871586748987019$ | $4297625822663308014$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=71 x^6+65 x^5+62 x^4+34 x^3+39 x^2+13 x+59$
- $y^2=51 x^6+66 x^5+49 x^4+41 x^3+5 x^2+50 x+4$
- $y^2=3 x^6+14 x^5+59 x^4+46 x^3+36 x^2+67 x+12$
- $y^2=9 x^6+55 x^5+31 x^4+11 x^2+60 x+28$
- $y^2=62 x^6+31 x^5+7 x^4+69 x^3+16 x^2+16 x+45$
- $y^2=4 x^6+51 x^5+34 x^4+20 x^3+22 x^2+40 x+47$
- $y^2=55 x^6+50 x^5+33 x^4+58 x^3+2 x^2+65 x+1$
- $y^2=31 x^6+64 x^5+61 x^4+42 x^3+47 x^2+40 x+11$
- $y^2=30 x^6+64 x^5+25 x^4+15 x^3+71 x^2+49 x+69$
- $y^2=61 x^6+23 x^5+40 x^4+32 x^3+31 x^2+3 x+26$
- $y^2=59 x^6+63 x^5+15 x^4+20 x^3+18 x^2+60 x+31$
- $y^2=8 x^6+65 x^5+35 x^4+49 x^3+22 x^2+41 x+65$
- $y^2=72 x^6+60 x^5+20 x^4+48 x^3+23 x^2+51 x+55$
- $y^2=53 x^6+57 x^5+14 x^4+25 x^3+24 x^2+44 x+69$
- $y^2=39 x^6+58 x^5+16 x^4+30 x^3+32 x^2+30 x+52$
- $y^2=9 x^6+15 x^5+x^4+48 x^3+55 x^2+13 x+57$
- $y^2=62 x^6+61 x^5+47 x^4+59 x^3+11 x^2+10 x+13$
- $y^2=20 x^6+41 x^5+47 x^4+38 x^3+31 x^2+47 x+23$
- $y^2=24 x^6+60 x^5+36 x^4+67 x^3+44 x^2+29 x+1$
- $y^2=26 x^6+11 x^5+x^4+33 x^3+9 x^2+33 x+29$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{73}$.
Endomorphism algebra over $\F_{73}$The endomorphism algebra of this simple isogeny class is 4.0.521725.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.73.aj_cn | $2$ | (not in LMFDB) |