Properties

Label 2.31.j_dd
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $1 + 9 x + 81 x^{2} + 279 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.598225233254$, $\pm0.668328438074$
Angle rank:  $2$ (numerical)
Number field:  4.0.260125.1
Galois group:  $D_{4}$
Jacobians:  $12$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1331$ $1004905$ $869157641$ $853225644205$ $820080853986416$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $41$ $1043$ $29171$ $923883$ $28644956$ $887427623$ $27512514581$ $852893337763$ $26439615552611$ $819628260989198$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is 4.0.260125.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.aj_dd$2$(not in LMFDB)