| L(s) = 1 | + 2·2-s + 3·4-s + 4·8-s + 6·9-s + 6·11-s − 4·13-s + 5·16-s − 2·17-s + 12·18-s + 12·22-s − 12·23-s − 8·26-s + 6·32-s − 4·34-s + 18·36-s − 12·37-s + 10·41-s + 22·43-s + 18·44-s − 24·46-s − 11·49-s − 12·52-s + 7·64-s − 6·68-s + 4·71-s + 24·72-s − 24·74-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s + 1.41·8-s + 2·9-s + 1.80·11-s − 1.10·13-s + 5/4·16-s − 0.485·17-s + 2.82·18-s + 2.55·22-s − 2.50·23-s − 1.56·26-s + 1.06·32-s − 0.685·34-s + 3·36-s − 1.97·37-s + 1.56·41-s + 3.35·43-s + 2.71·44-s − 3.53·46-s − 1.57·49-s − 1.66·52-s + 7/8·64-s − 0.727·68-s + 0.474·71-s + 2.82·72-s − 2.78·74-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3422500 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(8.177980982\) |
| \(L(\frac12)\) |
\(\approx\) |
\(8.177980982\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.365433901307916757036876238777, −9.309599800347654860591978449518, −8.713008769756002695167083309848, −7.947640534138135920507473756675, −7.75049846147459723594163771463, −7.30877147646708006609159942951, −6.83921422411362489763174019776, −6.81318215614629652702502073436, −6.07253757774285045766794578071, −5.96676924548532722673408752191, −5.41401325149031698123111522902, −4.53867238438763079385203332593, −4.50061658424296055028328432439, −4.27798398581720294187128543463, −3.62683743529594789690438247827, −3.49614269472130565669986720457, −2.45054938670335094397977526086, −2.00602650260678251321626644522, −1.69417294331642415473009116422, −0.851006944572910665417832137267,
0.851006944572910665417832137267, 1.69417294331642415473009116422, 2.00602650260678251321626644522, 2.45054938670335094397977526086, 3.49614269472130565669986720457, 3.62683743529594789690438247827, 4.27798398581720294187128543463, 4.50061658424296055028328432439, 4.53867238438763079385203332593, 5.41401325149031698123111522902, 5.96676924548532722673408752191, 6.07253757774285045766794578071, 6.81318215614629652702502073436, 6.83921422411362489763174019776, 7.30877147646708006609159942951, 7.75049846147459723594163771463, 7.947640534138135920507473756675, 8.713008769756002695167083309848, 9.309599800347654860591978449518, 9.365433901307916757036876238777