L(s) = 1 | − 3-s − 2·9-s + 9·11-s + 7·17-s − 9·25-s + 5·27-s − 9·33-s + 9·41-s − 6·43-s + 8·49-s − 7·51-s − 15·59-s − 8·73-s + 9·75-s + 81-s − 6·83-s + 5·89-s + 10·97-s − 18·99-s + 12·107-s − 17·113-s + 39·121-s − 9·123-s + 127-s + 6·129-s + 131-s + 137-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 2/3·9-s + 2.71·11-s + 1.69·17-s − 9/5·25-s + 0.962·27-s − 1.56·33-s + 1.40·41-s − 0.914·43-s + 8/7·49-s − 0.980·51-s − 1.95·59-s − 0.936·73-s + 1.03·75-s + 1/9·81-s − 0.658·83-s + 0.529·89-s + 1.01·97-s − 1.80·99-s + 1.16·107-s − 1.59·113-s + 3.54·121-s − 0.811·123-s + 0.0887·127-s + 0.528·129-s + 0.0873·131-s + 0.0854·137-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1769472 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.020092196\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.020092196\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.76816288445012016319199626469, −7.44097941417215809902168603306, −6.81544051671105572445095336501, −6.50270847059283324393831506762, −6.01213017007899066376900627948, −5.75420795026488020974932801343, −5.47480336751810664653835157533, −4.59076888942542417814186817629, −4.32623330635391613362009170443, −3.70857290744810790128431627733, −3.42519243245592785101176897219, −2.80712668167913110854208054812, −1.86902881982982207721030330322, −1.37722435516242290837260683401, −0.67220027398763645684290976825,
0.67220027398763645684290976825, 1.37722435516242290837260683401, 1.86902881982982207721030330322, 2.80712668167913110854208054812, 3.42519243245592785101176897219, 3.70857290744810790128431627733, 4.32623330635391613362009170443, 4.59076888942542417814186817629, 5.47480336751810664653835157533, 5.75420795026488020974932801343, 6.01213017007899066376900627948, 6.50270847059283324393831506762, 6.81544051671105572445095336501, 7.44097941417215809902168603306, 7.76816288445012016319199626469