Properties

Label 2.59.p_fc
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 + x + 59 x^{2} )( 1 + 14 x + 59 x^{2} )$
  $1 + 15 x + 132 x^{2} + 885 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.520734869606$, $\pm0.864937436951$
Angle rank:  $2$ (numerical)
Jacobians:  $24$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4514$ $12250996$ $42199381784$ $146759581482400$ $511108979449859054$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $75$ $3521$ $205470$ $12111513$ $714913425$ $42181253426$ $2488646986635$ $146830440050353$ $8662995776571930$ $511116755084336081$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.b $\times$ 1.59.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ap_fc$2$(not in LMFDB)
2.59.an_ea$2$(not in LMFDB)
2.59.n_ea$2$(not in LMFDB)