Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + x + 59 x^{2} )( 1 + 14 x + 59 x^{2} )$ |
$1 + 15 x + 132 x^{2} + 885 x^{3} + 3481 x^{4}$ | |
Frobenius angles: | $\pm0.520734869606$, $\pm0.864937436951$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $24$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4514$ | $12250996$ | $42199381784$ | $146759581482400$ | $511108979449859054$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $75$ | $3521$ | $205470$ | $12111513$ | $714913425$ | $42181253426$ | $2488646986635$ | $146830440050353$ | $8662995776571930$ | $511116755084336081$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 24 curves (of which all are hyperelliptic):
- $y^2=9 x^6+17 x^5+23 x^4+30 x^3+53 x^2+8 x+46$
- $y^2=3 x^6+45 x^5+15 x^4+28 x^3+29 x^2+47 x+24$
- $y^2=14 x^6+48 x^5+5 x^4+32 x^3+41 x^2+15 x+24$
- $y^2=24 x^6+35 x^5+12 x^4+40 x^3+44 x^2+26 x+16$
- $y^2=12 x^6+43 x^5+8 x^4+46 x^3+43 x^2+41 x+23$
- $y^2=38 x^6+26 x^5+26 x^4+23 x^3+38 x^2+54 x+21$
- $y^2=28 x^6+38 x^5+27 x^4+33 x^3+54 x^2+18 x+17$
- $y^2=19 x^6+23 x^4+38 x^3+56 x^2+8 x$
- $y^2=16 x^6+31 x^5+37 x^4+19 x^3+2 x^2+29 x+7$
- $y^2=29 x^6+49 x^5+56 x^4+36 x^3+4 x^2+44 x+2$
- $y^2=9 x^6+4 x^5+2 x^4+16 x^3+57 x^2+51 x+39$
- $y^2=19 x^6+16 x^5+56 x^4+14 x^3+52 x^2+16 x+51$
- $y^2=28 x^6+57 x^5+25 x^4+13 x^3+50 x^2+42 x+55$
- $y^2=36 x^6+13 x^5+14 x^4+38 x^3+54 x^2+19 x+29$
- $y^2=44 x^6+8 x^5+25 x^4+53 x^3+19 x^2+37 x+12$
- $y^2=20 x^6+6 x^5+45 x^4+5 x^3+42 x^2+33 x+45$
- $y^2=43 x^5+11 x^4+55 x^3+23 x^2+21 x+1$
- $y^2=20 x^6+26 x^5+29 x^4+54 x^3+46 x^2+26 x+8$
- $y^2=38 x^6+22 x^5+24 x^4+14 x^3+36 x^2+27 x+7$
- $y^2=41 x^6+11 x^5+25 x^4+x^3+36 x^2+27 x+6$
- $y^2=53 x^6+38 x^5+43 x^4+11 x^3+39 x^2+20 x+11$
- $y^2=32 x^6+38 x^5+27 x^4+14 x^3+9 x^2+32 x+25$
- $y^2=15 x^6+26 x^5+39 x^4+22 x^3+57 x^2+20 x+17$
- $y^2=48 x^6+23 x^5+24 x^4+57 x^3+43 x^2+36 x+41$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$The isogeny class factors as 1.59.b $\times$ 1.59.o and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.59.ap_fc | $2$ | (not in LMFDB) |
2.59.an_ea | $2$ | (not in LMFDB) |
2.59.n_ea | $2$ | (not in LMFDB) |