| L(s) = 1 | + 2-s + 4-s + 8-s − 9-s + 2·11-s + 16-s − 18-s + 2·22-s + 12·23-s + 2·25-s − 16·29-s + 32-s − 36-s + 4·37-s − 12·43-s + 2·44-s + 12·46-s − 7·49-s + 2·50-s − 16·53-s − 16·58-s + 64-s + 8·67-s − 20·71-s − 72-s + 4·74-s − 8·79-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1/3·9-s + 0.603·11-s + 1/4·16-s − 0.235·18-s + 0.426·22-s + 2.50·23-s + 2/5·25-s − 2.97·29-s + 0.176·32-s − 1/6·36-s + 0.657·37-s − 1.82·43-s + 0.301·44-s + 1.76·46-s − 49-s + 0.282·50-s − 2.19·53-s − 2.10·58-s + 1/8·64-s + 0.977·67-s − 2.37·71-s − 0.117·72-s + 0.464·74-s − 0.900·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.57200618119974847377060754081, −7.01574882776360207559256114650, −6.78199091838135607814972576394, −6.40703127490508891016399542314, −5.74931006280756116853522624304, −5.45560031739897703847254496372, −4.98596748270000360171806634285, −4.61085454118806496720369005029, −3.99635328968641356940989759802, −3.49602724176109222205625883774, −3.06678583033327235392288788502, −2.65090828519084735767923985386, −1.65504222427944030339450178016, −1.37940438394703721991360517634, 0,
1.37940438394703721991360517634, 1.65504222427944030339450178016, 2.65090828519084735767923985386, 3.06678583033327235392288788502, 3.49602724176109222205625883774, 3.99635328968641356940989759802, 4.61085454118806496720369005029, 4.98596748270000360171806634285, 5.45560031739897703847254496372, 5.74931006280756116853522624304, 6.40703127490508891016399542314, 6.78199091838135607814972576394, 7.01574882776360207559256114650, 7.57200618119974847377060754081