| L(s) = 1 | − 2-s + 4-s − 4·7-s − 8-s + 9-s − 4·11-s + 4·14-s + 16-s − 18-s + 4·22-s − 10·23-s − 8·25-s − 4·28-s − 32-s + 36-s + 4·37-s − 2·43-s − 4·44-s + 10·46-s + 9·49-s + 8·50-s + 26·53-s + 4·56-s − 4·63-s + 64-s + 12·67-s − 2·71-s + ⋯ |
| L(s) = 1 | − 0.707·2-s + 1/2·4-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 1.20·11-s + 1.06·14-s + 1/4·16-s − 0.235·18-s + 0.852·22-s − 2.08·23-s − 8/5·25-s − 0.755·28-s − 0.176·32-s + 1/6·36-s + 0.657·37-s − 0.304·43-s − 0.603·44-s + 1.47·46-s + 9/7·49-s + 1.13·50-s + 3.57·53-s + 0.534·56-s − 0.503·63-s + 1/8·64-s + 1.46·67-s − 0.237·71-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1707552 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.57851729497927355701736584210, −7.38184401092477047311562994700, −6.76927208012184346348983871903, −6.37536178160567248909529297497, −6.02249367621967807367301672794, −5.46225219791173253551851583448, −5.34380642146194802099365731188, −4.20930433067046279471336693936, −4.05567747782485019571367873580, −3.49576308008448780160317748545, −2.87364880000081578812764085938, −2.25863256077370037761867912205, −1.99800060103855743970211139741, −0.73798703027665168856944263212, 0,
0.73798703027665168856944263212, 1.99800060103855743970211139741, 2.25863256077370037761867912205, 2.87364880000081578812764085938, 3.49576308008448780160317748545, 4.05567747782485019571367873580, 4.20930433067046279471336693936, 5.34380642146194802099365731188, 5.46225219791173253551851583448, 6.02249367621967807367301672794, 6.37536178160567248909529297497, 6.76927208012184346348983871903, 7.38184401092477047311562994700, 7.57851729497927355701736584210