L(s) = 1 | + 8·11-s + 4·13-s + 2·25-s − 4·37-s + 16·47-s − 2·49-s + 16·59-s − 20·61-s − 16·71-s − 4·73-s − 8·83-s + 4·97-s − 16·107-s − 12·109-s + 30·121-s + 127-s + 131-s + 137-s + 139-s + 32·143-s + 149-s + 151-s + 157-s + 163-s + 167-s + 2·169-s + 173-s + ⋯ |
L(s) = 1 | + 2.41·11-s + 1.10·13-s + 2/5·25-s − 0.657·37-s + 2.33·47-s − 2/7·49-s + 2.08·59-s − 2.56·61-s − 1.89·71-s − 0.468·73-s − 0.878·83-s + 0.406·97-s − 1.54·107-s − 1.14·109-s + 2.72·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 2.67·143-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s + 2/13·169-s + 0.0760·173-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165888 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.085183990\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.085183990\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.126114682642108105410474176787, −8.816698349936449768745453830680, −8.490241311859140985938472760151, −7.74695028423085012602155920623, −7.14112329420953064038349678549, −6.80142119296241564499978441188, −6.24096722830303721273775957043, −5.90315234334121451845306922134, −5.28089485335483640646297616857, −4.32427486663986319186691113483, −4.10695357037614032838556007641, −3.53065418439902983766953623569, −2.80199447647835178093700059470, −1.67485090370693746162229758295, −1.10966450287732948909488876015,
1.10966450287732948909488876015, 1.67485090370693746162229758295, 2.80199447647835178093700059470, 3.53065418439902983766953623569, 4.10695357037614032838556007641, 4.32427486663986319186691113483, 5.28089485335483640646297616857, 5.90315234334121451845306922134, 6.24096722830303721273775957043, 6.80142119296241564499978441188, 7.14112329420953064038349678549, 7.74695028423085012602155920623, 8.490241311859140985938472760151, 8.816698349936449768745453830680, 9.126114682642108105410474176787