L(s) = 1 | + 4·2-s − 2·3-s + 8·4-s + 5-s − 8·6-s + 2·7-s + 8·8-s + 3·9-s + 4·10-s − 11-s − 16·12-s + 8·14-s − 2·15-s − 4·16-s + 2·17-s + 12·18-s + 8·19-s + 8·20-s − 4·21-s − 4·22-s − 8·23-s − 16·24-s − 10·27-s + 16·28-s − 6·29-s − 8·30-s + 11·31-s + ⋯ |
L(s) = 1 | + 2.82·2-s − 1.15·3-s + 4·4-s + 0.447·5-s − 3.26·6-s + 0.755·7-s + 2.82·8-s + 9-s + 1.26·10-s − 0.301·11-s − 4.61·12-s + 2.13·14-s − 0.516·15-s − 16-s + 0.485·17-s + 2.82·18-s + 1.83·19-s + 1.78·20-s − 0.872·21-s − 0.852·22-s − 1.66·23-s − 3.26·24-s − 1.92·27-s + 3.02·28-s − 1.11·29-s − 1.46·30-s + 1.97·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 24025 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 24025 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.564611140\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.564611140\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.55593111315306706842237051223, −12.65621841923551100758798437345, −12.19563478936745304193479045732, −11.96423064813585483616133106085, −11.56655391900895207109645015501, −11.25944302888091688369632982575, −10.38973904995505962643804707823, −9.945597895644451813523708626220, −9.303836363939542982619309428737, −8.437030060057162387642714551579, −7.47087177994057837339723874502, −7.15389918782590395811539451669, −6.16627312211400741566289817140, −5.87016029516199940113803405452, −5.43789700431921609813405892794, −5.07217617723638916400212916653, −4.35985557642864298962322164043, −3.85390365218689848036517225980, −3.03108790941852639483158102348, −1.94805695369951299108053156215,
1.94805695369951299108053156215, 3.03108790941852639483158102348, 3.85390365218689848036517225980, 4.35985557642864298962322164043, 5.07217617723638916400212916653, 5.43789700431921609813405892794, 5.87016029516199940113803405452, 6.16627312211400741566289817140, 7.15389918782590395811539451669, 7.47087177994057837339723874502, 8.437030060057162387642714551579, 9.303836363939542982619309428737, 9.945597895644451813523708626220, 10.38973904995505962643804707823, 11.25944302888091688369632982575, 11.56655391900895207109645015501, 11.96423064813585483616133106085, 12.19563478936745304193479045732, 12.65621841923551100758798437345, 13.55593111315306706842237051223