L(s) = 1 | + 2·2-s + 2·4-s + 6·5-s − 6·9-s + 12·10-s − 10·13-s − 4·16-s + 6·17-s − 12·18-s + 12·20-s + 18·25-s − 20·26-s − 6·29-s − 8·32-s + 12·34-s − 12·36-s + 12·37-s − 36·45-s + 14·49-s + 36·50-s − 20·52-s + 8·53-s − 12·58-s − 22·61-s − 8·64-s − 60·65-s + 12·68-s + ⋯ |
L(s) = 1 | + 1.41·2-s + 4-s + 2.68·5-s − 2·9-s + 3.79·10-s − 2.77·13-s − 16-s + 1.45·17-s − 2.82·18-s + 2.68·20-s + 18/5·25-s − 3.92·26-s − 1.11·29-s − 1.41·32-s + 2.05·34-s − 2·36-s + 1.97·37-s − 5.36·45-s + 2·49-s + 5.09·50-s − 2.77·52-s + 1.09·53-s − 1.57·58-s − 2.81·61-s − 64-s − 7.44·65-s + 1.45·68-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21904 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.787622809\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.787622809\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.38295322907736787778881326635, −13.00990653223404041069085592191, −12.33354705228281346665432087070, −11.98079613566299152672880204585, −11.64963749869419349558325972927, −10.66599652764054965452945764723, −10.32910330103679956927225347313, −9.624309784556378630629331724724, −9.262893026468890336311563424058, −9.080929980070047352098562688908, −7.85446052775446857041677386812, −7.36648869783280391306701732102, −6.38307137340059184778249816148, −5.96433320584729864389058438387, −5.42815115634598917646662852045, −5.39396683365954570854227555283, −4.60074539459330830700170132501, −3.22613434108872948136651348365, −2.42587430620713204501231134824, −2.35351817328274456471123048989,
2.35351817328274456471123048989, 2.42587430620713204501231134824, 3.22613434108872948136651348365, 4.60074539459330830700170132501, 5.39396683365954570854227555283, 5.42815115634598917646662852045, 5.96433320584729864389058438387, 6.38307137340059184778249816148, 7.36648869783280391306701732102, 7.85446052775446857041677386812, 9.080929980070047352098562688908, 9.262893026468890336311563424058, 9.624309784556378630629331724724, 10.32910330103679956927225347313, 10.66599652764054965452945764723, 11.64963749869419349558325972927, 11.98079613566299152672880204585, 12.33354705228281346665432087070, 13.00990653223404041069085592191, 13.38295322907736787778881326635