Invariants
Base field: | $\F_{19}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 361 x^{4}$ |
Frobenius angles: | $\pm0.250000000000$, $\pm0.750000000000$ |
Angle rank: | $0$ (numerical) |
Number field: | \(\Q(i, \sqrt{38})\) |
Galois group: | $C_2^2$ |
Jacobians: | $32$ |
This isogeny class is simple but not geometrically simple, primitive, not ordinary, and supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is supersingular.
$p$-rank: | $0$ |
Slopes: | $[1/2, 1/2, 1/2, 1/2]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $362$ | $131044$ | $47045882$ | $17172529936$ | $6131066257802$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $20$ | $362$ | $6860$ | $131766$ | $2476100$ | $47045882$ | $893871740$ | $16983041758$ | $322687697780$ | $6131066257802$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 32 curves (of which all are hyperelliptic):
- $y^2=6 x^6+12 x^5+12 x^4+13 x^3+6 x^2+16 x+5$
- $y^2=12 x^6+5 x^5+5 x^4+7 x^3+12 x^2+13 x+10$
- $y^2=3 x^6+x^5+14 x^4+13 x^3+12 x^2+6 x$
- $y^2=6 x^6+2 x^5+9 x^4+7 x^3+5 x^2+12 x$
- $y^2=15 x^6+6 x^5+9 x^4+9 x^2+13 x+15$
- $y^2=11 x^6+12 x^5+18 x^4+18 x^2+7 x+11$
- $y^2=11 x^6+18 x^5+4 x^4+15 x^3+15 x^2+14 x+14$
- $y^2=3 x^6+17 x^5+8 x^4+11 x^3+11 x^2+9 x+9$
- $y^2=18 x^6+4 x^5+7 x^4+11 x^2+6 x$
- $y^2=17 x^6+8 x^5+14 x^4+3 x^2+12 x$
- $y^2=8 x^6+4 x^5+6 x^4+7 x^3+9 x^2+3 x+9$
- $y^2=16 x^6+8 x^5+12 x^4+14 x^3+18 x^2+6 x+18$
- $y^2=16 x^6+3 x^5+6 x^4+18 x^3+15 x+14$
- $y^2=13 x^6+6 x^5+12 x^4+17 x^3+11 x+9$
- $y^2=10 x^6+13 x^5+14 x^4+13 x^3+15 x^2+8 x+14$
- $y^2=x^6+7 x^5+9 x^4+7 x^3+11 x^2+16 x+9$
- $y^2=15 x^6+15 x^5+10 x^4+18 x^3+6 x+12$
- $y^2=11 x^6+11 x^5+x^4+17 x^3+12 x+5$
- $y^2=12 x^6+2 x^5+18 x^4+7 x^3+13 x^2+5 x+11$
- $y^2=5 x^6+4 x^5+17 x^4+14 x^3+7 x^2+10 x+3$
- and 12 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{19^{4}}$.
Endomorphism algebra over $\F_{19}$The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{38})\). |
The base change of $A$ to $\F_{19^{4}}$ is 1.130321.bbu 2 and its endomorphism algebra is $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over \(\Q\) ramified at $19$ and $\infty$. |
- Endomorphism algebra over $\F_{19^{2}}$
The base change of $A$ to $\F_{19^{2}}$ is 1.361.a 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$
Base change
This is a primitive isogeny class.