Invariants
This isogeny class is not simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$A(\F_{q^r})$ |
$5920$ |
$62752000$ |
$498284369440$ |
$3937813504000000$ |
$31182219227055277600$ |
Point counts of the curve
$r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
$C(\F_{q^r})$ |
$64$ |
$7922$ |
$706816$ |
$62761758$ |
$5584148864$ |
$496981290962$ |
$44231335211456$ |
$3936588866233918$ |
$350356404466281664$ |
$31181719929966183602$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 98 curves (of which all are hyperelliptic):
- $y^2=62 x^6+37 x^5+65 x^4+35 x^3+61 x^2+38 x+35$
- $y^2=51 x^6+75 x^5+57 x^4+5 x^3+37 x^2+49 x+8$
- $y^2=35 x^6+17 x^5+52 x^4+5 x^3+69 x^2+7 x+51$
- $y^2=44 x^6+80 x^5+49 x^4+51 x^3+53 x^2+50 x+15$
- $y^2=60 x^6+23 x^5+21 x^4+82 x^3+37 x^2+76 x+83$
- $y^2=37 x^6+79 x^4+66 x^3+69 x^2+25 x+10$
- $y^2=6 x^6+43 x^5+41 x^4+25 x^3+63 x^2+19 x+77$
- $y^2=62 x^6+70 x^5+20 x^4+67 x^3+59 x^2+15 x+33$
- $y^2=17 x^6+6 x^5+38 x^4+71 x^3+23 x^2+32 x$
- $y^2=24 x^6+46 x^5+19 x^4+34 x^3+14 x^2+41 x+29$
- $y^2=75 x^6+8 x^5+16 x^4+64 x^3+62 x^2+61 x$
- $y^2=55 x^6+26 x^5+21 x^4+28 x^3+49 x^2+79 x+37$
- $y^2=32 x^6+61 x^5+61 x^4+29 x^3+74 x^2+34 x+5$
- $y^2=70 x^6+46 x^5+59 x^4+16 x^3+42 x^2+22 x+15$
- $y^2=38 x^6+38 x^5+48 x^4+54 x^3+13 x^2+73 x+26$
- $y^2=59 x^6+25 x^5+85 x^4+79 x^3+47 x^2+83 x+1$
- $y^2=84 x^6+51 x^5+11 x^4+63 x^3+45 x^2+15 x+53$
- $y^2=13 x^6+37 x^5+31 x^4+53 x^3+46 x^2+82 x+16$
- $y^2=71 x^6+21 x^5+77 x^4+67 x^3+21 x^2+48 x+16$
- $y^2=82 x^6+13 x^5+3 x^4+81 x^3+41 x^2+30 x+4$
- and 78 more
- $y^2=62 x^6+7 x^5+88 x^4+52 x^3+47 x^2+32 x+3$
- $y^2=86 x^6+70 x^5+37 x^4+44 x^3+49 x^2+6 x+78$
- $y^2=48 x^6+22 x^5+36 x^4+45 x^3+52 x^2+x+31$
- $y^2=8 x^6+35 x^5+82 x^4+70 x^3+50 x^2+57 x+18$
- $y^2=40 x^6+20 x^5+69 x^4+32 x^3+49 x^2+76 x+13$
- $y^2=49 x^6+86 x^5+20 x^4+10 x^3+77 x^2+21 x+64$
- $y^2=83 x^6+42 x^5+38 x^4+11 x^3+61 x^2+15 x+66$
- $y^2=59 x^6+23 x^5+87 x^4+46 x^3+83 x^2+28 x+7$
- $y^2=70 x^6+45 x^5+11 x^4+21 x^3+49 x^2+25 x+24$
- $y^2=35 x^6+36 x^5+5 x^4+30 x^3+6 x^2+87 x+41$
- $y^2=24 x^6+58 x^5+58 x^4+66 x^3+23 x^2+26 x+63$
- $y^2=73 x^6+23 x^5+20 x^4+8 x^3+41 x^2+68 x+3$
- $y^2=14 x^6+59 x^5+10 x^4+x^3+63 x^2+16 x+63$
- $y^2=65 x^6+27 x^5+29 x^4+74 x^3+68 x^2+83 x+79$
- $y^2=66 x^6+83 x^5+41 x^4+78 x^3+77 x^2+87 x+26$
- $y^2=83 x^6+84 x^5+78 x^4+45 x^3+73 x^2+49 x+3$
- $y^2=3 x^6+x^5+34 x^4+77 x^3+71 x^2+64 x+46$
- $y^2=87 x^6+65 x^5+85 x^4+53 x^3+81 x^2+74 x+35$
- $y^2=23 x^6+25 x^5+22 x^4+25 x^3+82 x^2+37 x+19$
- $y^2=46 x^6+80 x^5+20 x^4+24 x^3+64 x^2+28 x+52$
- $y^2=25 x^6+17 x^5+77 x^4+77 x^2+72 x+25$
- $y^2=36 x^6+28 x^5+10 x^4+68 x^3+81 x^2+82 x+25$
- $y^2=3 x^6+11 x^5+88 x^4+25 x^3+87 x^2+56 x+61$
- $y^2=8 x^6+5 x^5+32 x^4+33 x^3+55 x^2+74 x+86$
- $y^2=9 x^6+83 x^5+87 x^4+12 x^3+87 x^2+83 x+9$
- $y^2=39 x^6+17 x^5+73 x^4+4 x^3+84 x^2+18 x+79$
- $y^2=51 x^6+43 x^5+18 x^4+66 x^3+84 x^2+68 x+86$
- $y^2=41 x^6+76 x^5+64 x^4+59 x^3+31 x^2+46 x+7$
- $y^2=3 x^6+81 x^5+25 x^3+81 x^2+37 x+88$
- $y^2=39 x^6+6 x^5+54 x^4+83 x^3+7 x^2+17 x+64$
- $y^2=56 x^6+64 x^5+44 x^4+84 x^3+64 x^2+6 x+35$
- $y^2=21 x^6+23 x^5+71 x^4+39 x^3+32 x^2+75 x+49$
- $y^2=72 x^6+30 x^5+54 x^4+79 x^3+54 x^2+30 x+72$
- $y^2=38 x^6+45 x^5+68 x^4+77 x^3+75 x^2+82 x+42$
- $y^2=86 x^6+49 x^5+3 x^4+47 x^3+83 x^2+25 x+19$
- $y^2=3 x^6+45 x^5+65 x^4+23 x^3+45 x^2+71 x+87$
- $y^2=7 x^6+14 x^5+54 x^4+53 x^3+76 x^2+40 x+7$
- $y^2=59 x^6+76 x^5+41 x^4+48 x^2+71 x+59$
- $y^2=76 x^6+26 x^5+72 x^4+64 x^3+78 x^2+54 x+82$
- $y^2=18 x^6+27 x^5+45 x^4+62 x^3+45 x^2+27 x+18$
- $y^2=34 x^6+x^5+74 x^4+44 x^3+80 x^2+80 x$
- $y^2=2 x^6+17 x^5+21 x^4+86 x^3+57 x^2+30 x+66$
- $y^2=67 x^5+22 x^4+68 x^3+31 x^2+14 x+45$
- $y^2=77 x^6+5 x^5+63 x^4+57 x^3+54 x^2+2 x$
- $y^2=28 x^6+80 x^5+61 x^4+62 x^3+24 x^2+17 x+75$
- $y^2=49 x^6+33 x^5+29 x^4+43 x^3+75 x^2+46 x+67$
- $y^2=43 x^6+66 x^5+10 x^4+82 x^3+70 x^2+41 x+69$
- $y^2=19 x^6+22 x^5+58 x^4+67 x^3+69 x^2+39 x+19$
- $y^2=59 x^6+17 x^5+41 x^4+82 x^3+58 x^2+84 x+43$
- $y^2=43 x^6+74 x^5+75 x^4+70 x^3+29 x^2+5 x+72$
- $y^2=34 x^6+34 x^5+65 x^4+49 x^3+16 x^2+77 x+42$
- $y^2=35 x^6+52 x^5+56 x^4+24 x^3+x^2+28 x+78$
- $y^2=3 x^6+59 x^5+55 x^4+51 x^3+55 x^2+59 x+3$
- $y^2=69 x^6+43 x^5+64 x^4+24 x^3+57 x^2+33 x+47$
- $y^2=43 x^6+76 x^5+17 x^4+26 x^3+83 x^2+79 x+25$
- $y^2=55 x^6+29 x^5+72 x^4+8 x^3+86 x^2+21 x+29$
- $y^2=34 x^6+78 x^5+75 x^4+56 x^3+58 x^2+79 x+57$
- $y^2=52 x^6+41 x^5+55 x^4+56 x^3+60 x^2+61 x+75$
- $y^2=28 x^6+42 x^5+43 x^4+51 x^3+24 x^2+72 x+33$
- $y^2=46 x^6+73 x^5+64 x^4+71 x^3+30 x^2+25 x+87$
- $y^2=15 x^6+15 x^5+23 x^4+83 x^3+67 x^2+74 x+15$
- $y^2=62 x^6+5 x^5+75 x^4+x^3+70 x^2+14 x+82$
- $y^2=72 x^6+11 x^5+x^4+14 x^3+37 x^2+86 x+51$
- $y^2=27 x^6+66 x^5+56 x^4+64 x^3+2 x^2+69 x+14$
- $y^2=30 x^6+19 x^5+25 x^4+84 x^3+13 x^2+32 x+16$
- $y^2=19 x^6+41 x^5+x^4+27 x^3+42 x^2+83 x+54$
- $y^2=54 x^6+59 x^5+75 x^4+85 x^3+33 x^2+60 x+66$
- $y^2=65 x^6+77 x^5+7 x^4+81 x^3+72 x^2+22 x+1$
- $y^2=62 x^6+25 x^5+11 x^4+72 x^3+43 x^2+40 x+46$
- $y^2=19 x^6+25 x^5+84 x^4+49 x^3+14 x^2+35 x+41$
- $y^2=66 x^6+36 x^5+4 x^3+64 x^2+8 x+88$
- $y^2=65 x^6+61 x^5+30 x^4+85 x^3+18 x^2+35 x+14$
- $y^2=17 x^6+19 x^5+19 x^4+13 x^3+61 x^2+60 x+73$
- $y^2=84 x^6+44 x^5+67 x^4+30 x^3+70 x^2+26 x+74$
- $y^2=79 x^6+58 x^5+49 x^4+5 x^3+84 x^2+64 x+64$
- $y^2=43 x^6+44 x^5+47 x^4+13 x^3+45 x^2+85 x+26$
- $y^2=55 x^6+32 x^5+2 x^4+74 x^3+5 x^2+22 x+25$
- $y^2=72 x^6+88 x^5+45 x^4+13 x^3+53 x^2+68 x+76$
All geometric endomorphisms are defined over $\F_{89^{4}}$.
Endomorphism algebra over $\F_{89}$
The isogeny class factors as 1.89.aq $\times$ 1.89.ak and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
Endomorphism algebra over $\overline{\F}_{89}$
Remainder of endomorphism lattice by field
- Endomorphism algebra over $\F_{89^{2}}$
The base change of $A$ to $\F_{89^{2}}$ is 1.7921.ada $\times$ 1.7921.da. The endomorphism algebra for each factor is:
|
Base change
This is a primitive isogeny class.
Twists