L(s) = 1 | − 2-s + 4-s − 8-s − 9-s + 4·13-s + 16-s + 13·17-s + 18-s − 4·26-s − 8·29-s − 32-s − 13·34-s − 36-s − 7·37-s + 4·41-s + 11·49-s + 4·52-s + 13·53-s + 8·58-s + 6·61-s + 64-s + 13·68-s + 72-s − 15·73-s + 7·74-s − 8·81-s − 4·82-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 1/2·4-s − 0.353·8-s − 1/3·9-s + 1.10·13-s + 1/4·16-s + 3.15·17-s + 0.235·18-s − 0.784·26-s − 1.48·29-s − 0.176·32-s − 2.22·34-s − 1/6·36-s − 1.15·37-s + 0.624·41-s + 11/7·49-s + 0.554·52-s + 1.78·53-s + 1.05·58-s + 0.768·61-s + 1/8·64-s + 1.57·68-s + 0.117·72-s − 1.75·73-s + 0.813·74-s − 8/9·81-s − 0.441·82-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1220000 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1220000 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.771485123\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.771485123\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.944079674215710174083705133495, −7.63761304802003832925943840675, −7.24058783417139843852626336010, −6.98190521838698117581077135159, −5.98560491539327152323768292395, −5.94033187236765858848701191612, −5.53317158747977774958162474746, −5.13911069257074279782913647420, −4.24058978456206252937907113215, −3.58749928329521382200856757956, −3.48179184562867865627845708559, −2.80827500533861491181573715803, −2.02906101519760742195143451319, −1.31909499726767759200852004362, −0.74753170431895483070031347213,
0.74753170431895483070031347213, 1.31909499726767759200852004362, 2.02906101519760742195143451319, 2.80827500533861491181573715803, 3.48179184562867865627845708559, 3.58749928329521382200856757956, 4.24058978456206252937907113215, 5.13911069257074279782913647420, 5.53317158747977774958162474746, 5.94033187236765858848701191612, 5.98560491539327152323768292395, 6.98190521838698117581077135159, 7.24058783417139843852626336010, 7.63761304802003832925943840675, 7.944079674215710174083705133495