Properties

Label 2.73.p_gq
Base field $\F_{73}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{73}$
Dimension:  $2$
L-polynomial:  $( 1 + 2 x + 73 x^{2} )( 1 + 13 x + 73 x^{2} )$
  $1 + 15 x + 172 x^{2} + 1095 x^{3} + 5329 x^{4}$
Frobenius angles:  $\pm0.537340940774$, $\pm0.775177233176$
Angle rank:  $2$ (numerical)
Jacobians:  $90$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6612$ $29039904$ $150915144384$ $806477744509056$ $4297555707957824532$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $89$ $5449$ $387938$ $28398865$ $2073037769$ $151335174958$ $11047395180113$ $806460012526369$ $58871587614550994$ $4297625828361294889$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 90 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{73}$.

Endomorphism algebra over $\F_{73}$
The isogeny class factors as 1.73.c $\times$ 1.73.n and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.73.ap_gq$2$(not in LMFDB)
2.73.al_eq$2$(not in LMFDB)
2.73.l_eq$2$(not in LMFDB)