Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 80 x^{2} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.351823347898$, $\pm0.648176652102$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{6}, \sqrt{-214})\) |
Galois group: | $C_2^2$ |
Jacobians: | $200$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4570$ | $20884900$ | $90457816810$ | $406171623690000$ | $1822837804397169850$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $68$ | $4650$ | $300764$ | $20156278$ | $1350125108$ | $90457251450$ | $6060711605324$ | $406067744868958$ | $27206534396294948$ | $1822837804242578250$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 200 curves (of which all are hyperelliptic):
- $y^2=33 x^6+37 x^5+34 x^4+10 x^3+33 x^2+66 x+14$
- $y^2=66 x^6+7 x^5+x^4+20 x^3+66 x^2+65 x+28$
- $y^2=32 x^6+51 x^5+51 x^4+37 x^3+10 x^2+30 x+61$
- $y^2=64 x^6+35 x^5+35 x^4+7 x^3+20 x^2+60 x+55$
- $y^2=53 x^6+12 x^5+53 x^4+6 x^3+49 x^2+10 x+31$
- $y^2=39 x^6+24 x^5+39 x^4+12 x^3+31 x^2+20 x+62$
- $y^2=48 x^6+7 x^5+65 x^4+13 x^3+21 x^2+17 x+33$
- $y^2=29 x^6+14 x^5+63 x^4+26 x^3+42 x^2+34 x+66$
- $y^2=64 x^6+5 x^5+51 x^4+21 x^3+51 x^2+62 x+37$
- $y^2=61 x^6+10 x^5+35 x^4+42 x^3+35 x^2+57 x+7$
- $y^2=26 x^6+3 x^5+47 x^4+34 x^3+62 x^2+33 x+48$
- $y^2=52 x^6+6 x^5+27 x^4+x^3+57 x^2+66 x+29$
- $y^2=23 x^6+50 x^5+48 x^4+64 x^3+30 x^2+43 x+47$
- $y^2=46 x^6+33 x^5+29 x^4+61 x^3+60 x^2+19 x+27$
- $y^2=52 x^6+52 x^5+21 x^4+17 x^3+27 x^2+3 x+9$
- $y^2=37 x^6+37 x^5+42 x^4+34 x^3+54 x^2+6 x+18$
- $y^2=61 x^6+2 x^5+66 x^4+15 x^3+18 x^2+40 x+17$
- $y^2=55 x^6+4 x^5+65 x^4+30 x^3+36 x^2+13 x+34$
- $y^2=25 x^6+43 x^5+10 x^4+49 x^3+63 x^2+28 x+42$
- $y^2=50 x^6+19 x^5+20 x^4+31 x^3+59 x^2+56 x+17$
- and 180 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67^{2}}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{6}, \sqrt{-214})\). |
The base change of $A$ to $\F_{67^{2}}$ is 1.4489.dc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-321}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.a_adc | $4$ | (not in LMFDB) |