L(s) = 1 | − 2·2-s − 2·3-s − 10·4-s + 2·5-s + 4·6-s − 20·7-s + 32·8-s − 3·9-s − 4·10-s + 20·12-s − 80·13-s + 40·14-s − 4·15-s + 44·16-s + 124·17-s + 6·18-s − 72·19-s − 20·20-s + 40·21-s − 98·23-s − 64·24-s − 55·25-s + 160·26-s − 34·27-s + 200·28-s − 144·29-s + 8·30-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.384·3-s − 5/4·4-s + 0.178·5-s + 0.272·6-s − 1.07·7-s + 1.41·8-s − 1/9·9-s − 0.126·10-s + 0.481·12-s − 1.70·13-s + 0.763·14-s − 0.0688·15-s + 0.687·16-s + 1.76·17-s + 0.0785·18-s − 0.869·19-s − 0.223·20-s + 0.415·21-s − 0.888·23-s − 0.544·24-s − 0.439·25-s + 1.20·26-s − 0.242·27-s + 1.34·28-s − 0.922·29-s + 0.0486·30-s + ⋯ |
Λ(s)=(=(14641s/2ΓC(s)2L(s)Λ(4−s)
Λ(s)=(=(14641s/2ΓC(s+3/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
14641
= 114
|
Sign: |
1
|
Analytic conductor: |
50.9686 |
Root analytic conductor: |
2.67193 |
Motivic weight: |
3 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
2
|
Selberg data: |
(4, 14641, ( :3/2,3/2), 1)
|
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 11 | | 1 |
good | 2 | D4 | 1+pT+7pT2+p4T3+p6T4 |
| 3 | D4 | 1+2T+7T2+2p3T3+p6T4 |
| 5 | D4 | 1−2T+59T2−2p3T3+p6T4 |
| 7 | D4 | 1+20T+738T2+20p3T3+p6T4 |
| 13 | D4 | 1+80T+4794T2+80p3T3+p6T4 |
| 17 | D4 | 1−124T+13238T2−124p3T3+p6T4 |
| 19 | D4 | 1+72T+4214T2+72p3T3+p6T4 |
| 23 | D4 | 1+98T+22847T2+98p3T3+p6T4 |
| 29 | D4 | 1+144T+44554T2+144p3T3+p6T4 |
| 31 | D4 | 1+34T+57519T2+34p3T3+p6T4 |
| 37 | D4 | 1−54T+101843T2−54p3T3+p6T4 |
| 41 | D4 | 1+536T+209618T2+536p3T3+p6T4 |
| 43 | D4 | 1−60T+159146T2−60p3T3+p6T4 |
| 47 | D4 | 1+272T+182942T2+272p3T3+p6T4 |
| 53 | D4 | 1+492T+348862T2+492p3T3+p6T4 |
| 59 | D4 | 1−634T+458975T2−634p3T3+p6T4 |
| 61 | D4 | 1+840T+528794T2+840p3T3+p6T4 |
| 67 | D4 | 1−754T+742455T2−754p3T3+p6T4 |
| 71 | D4 | 1+678T+813415T2+678p3T3+p6T4 |
| 73 | D4 | 1−400T+160962T2−400p3T3+p6T4 |
| 79 | D4 | 1+4pT−279966T2+4p4T3+p6T4 |
| 83 | D4 | 1+468T+1155130T2+468p3T3+p6T4 |
| 89 | D4 | 1+1842T+1935427T2+1842p3T3+p6T4 |
| 97 | D4 | 1−2194T+2966547T2−2194p3T3+p6T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.60049138921098189658558253409, −12.39583005398207801588432958358, −11.80894701207969181601106078217, −11.06214396111645016321095234316, −10.22117977230772887434677405655, −9.901678808544750095756864408089, −9.661350687673465733032615363812, −9.305897447054092520175674310873, −8.295524804042286583231505106990, −8.095185549472386784858743798541, −7.35543080829368817035264404875, −6.68386104755497933577516822007, −5.82553932576668162270287513298, −5.32280648645674888756322103045, −4.65150366772600906780035440712, −3.83879729854836863296002502972, −3.05088622613104236600227662442, −1.66692501185640243428159567255, 0, 0,
1.66692501185640243428159567255, 3.05088622613104236600227662442, 3.83879729854836863296002502972, 4.65150366772600906780035440712, 5.32280648645674888756322103045, 5.82553932576668162270287513298, 6.68386104755497933577516822007, 7.35543080829368817035264404875, 8.095185549472386784858743798541, 8.295524804042286583231505106990, 9.305897447054092520175674310873, 9.661350687673465733032615363812, 9.901678808544750095756864408089, 10.22117977230772887434677405655, 11.06214396111645016321095234316, 11.80894701207969181601106078217, 12.39583005398207801588432958358, 12.60049138921098189658558253409