L(s) = 1 | + 2·4-s − 2·7-s + 2·13-s − 2·19-s − 25-s − 4·28-s − 2·31-s + 10·37-s − 5·43-s − 2·49-s + 4·52-s − 17·61-s − 8·64-s + 4·67-s − 2·73-s − 4·76-s − 2·79-s − 4·91-s − 20·97-s − 2·100-s − 8·103-s − 32·109-s + 2·121-s − 4·124-s + 127-s + 131-s + 4·133-s + ⋯ |
L(s) = 1 | + 4-s − 0.755·7-s + 0.554·13-s − 0.458·19-s − 1/5·25-s − 0.755·28-s − 0.359·31-s + 1.64·37-s − 0.762·43-s − 2/7·49-s + 0.554·52-s − 2.17·61-s − 64-s + 0.488·67-s − 0.234·73-s − 0.458·76-s − 0.225·79-s − 0.419·91-s − 2.03·97-s − 1/5·100-s − 0.788·103-s − 3.06·109-s + 2/11·121-s − 0.359·124-s + 0.0887·127-s + 0.0873·131-s + 0.346·133-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1108809 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.84226080002954015968394152703, −7.35578743883212382727349947866, −6.79694043732077416807887103412, −6.65111829928214628671538498508, −6.13105567121200364120291738511, −5.80803249410114836798381157371, −5.31485653202830864615624498231, −4.47013171218302891820738220679, −4.27444291094218043513557477044, −3.50208947171869667367322083913, −3.03951711983640157538543845005, −2.57903880689061774124589329449, −1.91216222893672947830341232036, −1.25229754857589181841889913305, 0,
1.25229754857589181841889913305, 1.91216222893672947830341232036, 2.57903880689061774124589329449, 3.03951711983640157538543845005, 3.50208947171869667367322083913, 4.27444291094218043513557477044, 4.47013171218302891820738220679, 5.31485653202830864615624498231, 5.80803249410114836798381157371, 6.13105567121200364120291738511, 6.65111829928214628671538498508, 6.79694043732077416807887103412, 7.35578743883212382727349947866, 7.84226080002954015968394152703