Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 83 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.106839396580$, $\pm0.893160603420$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{21}, \sqrt{-23})\) |
Galois group: | $C_2^2$ |
Jacobians: | $40$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2727$ | $7436529$ | $22164488784$ | $62239650202521$ | $174887471182671207$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2644$ | $148878$ | $7887940$ | $418195494$ | $22164616438$ | $1174711139838$ | $62259718742404$ | $3299763591802134$ | $174887471999829364$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=23 x^6+39 x^5+35 x^4+18 x^3+16 x^2+35 x+1$
- $y^2=46 x^6+25 x^5+17 x^4+36 x^3+32 x^2+17 x+2$
- $y^2=19 x^6+27 x^5+43 x^4+25 x^3+9 x^2+38 x+38$
- $y^2=38 x^6+x^5+33 x^4+50 x^3+18 x^2+23 x+23$
- $y^2=26 x^6+19 x^5+45 x^4+42 x^3+31 x^2+28 x+17$
- $y^2=12 x^6+36 x^5+14 x^4+x^3+15 x^2+38 x+33$
- $y^2=23 x^6+16 x^5+48 x^4+38 x^3+52 x^2+12 x+30$
- $y^2=46 x^6+32 x^5+43 x^4+23 x^3+51 x^2+24 x+7$
- $y^2=34 x^6+12 x^5+8 x^4+6 x^3+27 x^2+44 x+49$
- $y^2=15 x^6+24 x^5+16 x^4+12 x^3+x^2+35 x+45$
- $y^2=29 x^6+8 x^4+11 x^3+9 x^2+31 x+4$
- $y^2=5 x^6+16 x^4+22 x^3+18 x^2+9 x+8$
- $y^2=24 x^6+28 x^5+46 x^4+3 x^3+11 x^2+13 x+28$
- $y^2=48 x^6+3 x^5+39 x^4+6 x^3+22 x^2+26 x+3$
- $y^2=48 x^6+15 x^5+45 x^4+24 x^3+44 x^2+32 x+17$
- $y^2=17 x^6+15 x^5+47 x^4+41 x^3+51 x^2+20 x+24$
- $y^2=34 x^6+30 x^5+41 x^4+29 x^3+49 x^2+40 x+48$
- $y^2=12 x^6+3 x^5+2 x^4+20 x^3+6 x^2+27 x+26$
- $y^2=x^6+50 x^4+4 x^3+38 x^2+3 x+11$
- $y^2=2 x^6+47 x^4+8 x^3+23 x^2+6 x+22$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{21}, \sqrt{-23})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.adf 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-483}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_df | $4$ | (not in LMFDB) |