Invariants
Base field: | $\F_{71}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 77 x^{2} + 5041 x^{4}$ |
Frobenius angles: | $\pm0.158785616796$, $\pm0.841214383204$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-65}, \sqrt{219})\) |
Galois group: | $C_2^2$ |
Jacobians: | $84$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4965$ | $24651225$ | $128100991860$ | $645964668747225$ | $3255243550026514125$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $4888$ | $357912$ | $25419988$ | $1804229352$ | $128101699798$ | $9095120158392$ | $645753598397668$ | $45848500718449032$ | $3255243549043147048$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):
- $y^2=58 x^6+3 x^5+29 x^4+28 x^3+9 x^2+52 x+59$
- $y^2=51 x^6+21 x^5+61 x^4+54 x^3+63 x^2+9 x+58$
- $y^2=50 x^6+22 x^5+44 x^4+37 x^3+56 x^2+45 x+12$
- $y^2=66 x^6+12 x^5+24 x^4+46 x^3+37 x^2+31 x+13$
- $y^2=18 x^6+16 x^5+33 x^4+30 x^3+40 x^2+30 x+62$
- $y^2=55 x^6+41 x^5+18 x^4+68 x^3+67 x^2+68 x+8$
- $y^2=70 x^6+54 x^5+58 x^4+37 x^3+67 x^2+4 x+44$
- $y^2=64 x^6+23 x^5+51 x^4+46 x^3+43 x^2+28 x+24$
- $y^2=62 x^6+16 x^5+48 x^4+x^3+47 x^2+38 x+34$
- $y^2=8 x^6+41 x^5+52 x^4+7 x^3+45 x^2+53 x+25$
- $y^2=36 x^6+20 x^5+15 x^4+36 x^3+69 x^2+61 x+48$
- $y^2=39 x^6+69 x^5+34 x^4+39 x^3+57 x^2+x+52$
- $y^2=45 x^6+65 x^5+50 x^4+48 x^3+9 x^2+8 x+68$
- $y^2=55 x^6+20 x^5+50 x^4+70 x^3+11 x^2+33 x+52$
- $y^2=3 x^6+43 x^5+64 x^4+46 x^3+12 x^2+4 x+70$
- $y^2=40 x^6+68 x^5+30 x^4+68 x^3+40 x^2+52 x+26$
- $y^2=67 x^6+50 x^5+68 x^4+50 x^3+67 x^2+9 x+40$
- $y^2=43 x^6+42 x^5+49 x^4+27 x^3+4 x^2+8 x+47$
- $y^2=17 x^6+10 x^5+59 x^4+47 x^3+28 x^2+56 x+45$
- $y^2=68 x^6+26 x^5+38 x^4+12 x^3+25 x^2+8 x+46$
- and 64 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{71^{2}}$.
Endomorphism algebra over $\F_{71}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-65}, \sqrt{219})\). |
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.acz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-14235}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.71.a_cz | $4$ | (not in LMFDB) |