Properties

Label 2.71.a_acz
Base field $\F_{71}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{71}$
Dimension:  $2$
L-polynomial:  $1 - 77 x^{2} + 5041 x^{4}$
Frobenius angles:  $\pm0.158785616796$, $\pm0.841214383204$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-65}, \sqrt{219})\)
Galois group:  $C_2^2$
Jacobians:  $84$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4965$ $24651225$ $128100991860$ $645964668747225$ $3255243550026514125$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $72$ $4888$ $357912$ $25419988$ $1804229352$ $128101699798$ $9095120158392$ $645753598397668$ $45848500718449032$ $3255243549043147048$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 84 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{71^{2}}$.

Endomorphism algebra over $\F_{71}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-65}, \sqrt{219})\).
Endomorphism algebra over $\overline{\F}_{71}$
The base change of $A$ to $\F_{71^{2}}$ is 1.5041.acz 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-14235}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.71.a_cz$4$(not in LMFDB)