Properties

Label 2-9900-1.1-c1-0-58
Degree $2$
Conductor $9900$
Sign $-1$
Analytic cond. $79.0518$
Root an. cond. $8.89111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·7-s + 11-s + 6·13-s − 2·17-s − 4·19-s + 4·23-s + 6·29-s − 8·31-s − 8·37-s + 2·41-s − 10·43-s − 12·47-s − 3·49-s + 8·53-s + 2·61-s + 4·67-s + 4·71-s + 10·73-s − 2·77-s − 16·79-s − 6·83-s − 2·89-s − 12·91-s + 4·97-s − 6·101-s + 8·103-s + 18·107-s + ⋯
L(s)  = 1  − 0.755·7-s + 0.301·11-s + 1.66·13-s − 0.485·17-s − 0.917·19-s + 0.834·23-s + 1.11·29-s − 1.43·31-s − 1.31·37-s + 0.312·41-s − 1.52·43-s − 1.75·47-s − 3/7·49-s + 1.09·53-s + 0.256·61-s + 0.488·67-s + 0.474·71-s + 1.17·73-s − 0.227·77-s − 1.80·79-s − 0.658·83-s − 0.211·89-s − 1.25·91-s + 0.406·97-s − 0.597·101-s + 0.788·103-s + 1.74·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(79.0518\)
Root analytic conductor: \(8.89111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 4 T + p T^{2} \) 1.97.ae
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.05488925862793760515073267802, −6.64556779530005623119082788665, −6.13663047200579074564891976846, −5.30874595906011267580010104753, −4.50954470626171265724338798069, −3.59953337893438484760664278550, −3.28105945033907310456619715307, −2.10157647242675039894071686789, −1.23555998271693626765307611825, 0, 1.23555998271693626765307611825, 2.10157647242675039894071686789, 3.28105945033907310456619715307, 3.59953337893438484760664278550, 4.50954470626171265724338798069, 5.30874595906011267580010104753, 6.13663047200579074564891976846, 6.64556779530005623119082788665, 7.05488925862793760515073267802

Graph of the $Z$-function along the critical line