Properties

Label 2-9900-1.1-c1-0-13
Degree $2$
Conductor $9900$
Sign $1$
Analytic cond. $79.0518$
Root an. cond. $8.89111$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11-s − 2·13-s − 6·17-s − 2·19-s + 4·23-s + 2·29-s + 4·31-s + 8·37-s − 2·41-s − 12·43-s + 8·47-s − 7·49-s − 6·53-s + 14·61-s − 12·67-s + 12·71-s + 6·73-s − 6·79-s − 14·83-s + 12·97-s + 14·101-s + 4·103-s − 6·107-s − 10·109-s + 18·113-s + ⋯
L(s)  = 1  + 0.301·11-s − 0.554·13-s − 1.45·17-s − 0.458·19-s + 0.834·23-s + 0.371·29-s + 0.718·31-s + 1.31·37-s − 0.312·41-s − 1.82·43-s + 1.16·47-s − 49-s − 0.824·53-s + 1.79·61-s − 1.46·67-s + 1.42·71-s + 0.702·73-s − 0.675·79-s − 1.53·83-s + 1.21·97-s + 1.39·101-s + 0.394·103-s − 0.580·107-s − 0.957·109-s + 1.69·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(79.0518\)
Root analytic conductor: \(8.89111\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.670693258\)
\(L(\frac12)\) \(\approx\) \(1.670693258\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65743840324001735248618925241, −6.75804173648619847761297178475, −6.56734540209241168953766149104, −5.62331116299908881721176740356, −4.71114192225086257340647695389, −4.40678518450235365260112721170, −3.35908569236542002649809298669, −2.57234558949746491754476582116, −1.79628078042050405972321124715, −0.60204989245330181610578372085, 0.60204989245330181610578372085, 1.79628078042050405972321124715, 2.57234558949746491754476582116, 3.35908569236542002649809298669, 4.40678518450235365260112721170, 4.71114192225086257340647695389, 5.62331116299908881721176740356, 6.56734540209241168953766149104, 6.75804173648619847761297178475, 7.65743840324001735248618925241

Graph of the $Z$-function along the critical line