Properties

Label 2-95550-1.1-c1-0-123
Degree $2$
Conductor $95550$
Sign $1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s + 12-s + 13-s + 16-s + 3·17-s − 18-s + 2·19-s + 3·23-s − 24-s − 26-s + 27-s + 6·29-s + 5·31-s − 32-s − 3·34-s + 36-s − 4·37-s − 2·38-s + 39-s + 9·41-s + 8·43-s − 3·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.288·12-s + 0.277·13-s + 1/4·16-s + 0.727·17-s − 0.235·18-s + 0.458·19-s + 0.625·23-s − 0.204·24-s − 0.196·26-s + 0.192·27-s + 1.11·29-s + 0.898·31-s − 0.176·32-s − 0.514·34-s + 1/6·36-s − 0.657·37-s − 0.324·38-s + 0.160·39-s + 1.40·41-s + 1.21·43-s − 0.442·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.212855710\)
\(L(\frac12)\) \(\approx\) \(3.212855710\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 9 T + p T^{2} \) 1.71.aj
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99629905160750, −13.31836607858809, −12.72293756200523, −12.40094911474597, −11.74889256933202, −11.31966876063932, −10.74150157328306, −10.19259523554920, −9.861892259811164, −9.277306298309526, −8.811764826492779, −8.349258319722053, −7.852340195365586, −7.373915601468421, −6.852086362316630, −6.302425830840580, −5.658124905566646, −5.116827247953787, −4.349864103464712, −3.803770633228984, −3.038020086396768, −2.690132004711792, −1.960244153907117, −1.071730957495225, −0.7377610801043479, 0.7377610801043479, 1.071730957495225, 1.960244153907117, 2.690132004711792, 3.038020086396768, 3.803770633228984, 4.349864103464712, 5.116827247953787, 5.658124905566646, 6.302425830840580, 6.852086362316630, 7.373915601468421, 7.852340195365586, 8.349258319722053, 8.811764826492779, 9.277306298309526, 9.861892259811164, 10.19259523554920, 10.74150157328306, 11.31966876063932, 11.74889256933202, 12.40094911474597, 12.72293756200523, 13.31836607858809, 13.99629905160750

Graph of the $Z$-function along the critical line