Properties

Label 2-95550-1.1-c1-0-101
Degree $2$
Conductor $95550$
Sign $-1$
Analytic cond. $762.970$
Root an. cond. $27.6219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 6·11-s + 12-s − 13-s + 16-s − 4·17-s − 18-s − 7·19-s + 6·22-s − 2·23-s − 24-s + 26-s + 27-s − 3·29-s + 2·31-s − 32-s − 6·33-s + 4·34-s + 36-s − 3·37-s + 7·38-s − 39-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 1.80·11-s + 0.288·12-s − 0.277·13-s + 1/4·16-s − 0.970·17-s − 0.235·18-s − 1.60·19-s + 1.27·22-s − 0.417·23-s − 0.204·24-s + 0.196·26-s + 0.192·27-s − 0.557·29-s + 0.359·31-s − 0.176·32-s − 1.04·33-s + 0.685·34-s + 1/6·36-s − 0.493·37-s + 1.13·38-s − 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 95550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(95550\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(762.970\)
Root analytic conductor: \(27.6219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 95550,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 3 T + p T^{2} \) 1.79.d
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.06365446480780, −13.48123628057217, −12.99993941242207, −12.67679602411618, −12.22827222670557, −11.34336352671601, −10.95808422464668, −10.49129419501487, −10.21164964909821, −9.448094458357601, −9.127393865472752, −8.419953801733881, −8.153881953167488, −7.686086518877799, −7.082550923403910, −6.643979323933779, −5.875688085647415, −5.471662962259175, −4.609077301983093, −4.237050941802099, −3.462133514720235, −2.555103069501635, −2.403664102598472, −1.852113952489732, −0.6919192804850506, 0, 0.6919192804850506, 1.852113952489732, 2.403664102598472, 2.555103069501635, 3.462133514720235, 4.237050941802099, 4.609077301983093, 5.471662962259175, 5.875688085647415, 6.643979323933779, 7.082550923403910, 7.686086518877799, 8.153881953167488, 8.419953801733881, 9.127393865472752, 9.448094458357601, 10.21164964909821, 10.49129419501487, 10.95808422464668, 11.34336352671601, 12.22827222670557, 12.67679602411618, 12.99993941242207, 13.48123628057217, 14.06365446480780

Graph of the $Z$-function along the critical line