Properties

Label 2-925-1.1-c1-0-32
Degree $2$
Conductor $925$
Sign $-1$
Analytic cond. $7.38616$
Root an. cond. $2.71774$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·4-s + 7-s − 2·9-s + 3·11-s + 2·12-s + 4·13-s + 4·16-s − 6·17-s + 2·19-s − 21-s − 6·23-s + 5·27-s − 2·28-s − 6·29-s − 4·31-s − 3·33-s + 4·36-s − 37-s − 4·39-s − 9·41-s − 8·43-s − 6·44-s − 3·47-s − 4·48-s − 6·49-s + 6·51-s + ⋯
L(s)  = 1  − 0.577·3-s − 4-s + 0.377·7-s − 2/3·9-s + 0.904·11-s + 0.577·12-s + 1.10·13-s + 16-s − 1.45·17-s + 0.458·19-s − 0.218·21-s − 1.25·23-s + 0.962·27-s − 0.377·28-s − 1.11·29-s − 0.718·31-s − 0.522·33-s + 2/3·36-s − 0.164·37-s − 0.640·39-s − 1.40·41-s − 1.21·43-s − 0.904·44-s − 0.437·47-s − 0.577·48-s − 6/7·49-s + 0.840·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(925\)    =    \(5^{2} \cdot 37\)
Sign: $-1$
Analytic conductor: \(7.38616\)
Root analytic conductor: \(2.71774\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 \)
37 \( 1 + T \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 4 T + p T^{2} \) 1.31.e
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 - 3 T + p T^{2} \) 1.53.ad
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.591268537738103586397612813688, −8.647494221806725911176641352691, −8.390237773813478013059373004459, −6.96328856044475469810412834337, −6.03232690048232103384500782557, −5.31354420552212102801103714157, −4.28699193481010687037956905954, −3.49397830742570960606550504227, −1.63648598905395091233402759288, 0, 1.63648598905395091233402759288, 3.49397830742570960606550504227, 4.28699193481010687037956905954, 5.31354420552212102801103714157, 6.03232690048232103384500782557, 6.96328856044475469810412834337, 8.390237773813478013059373004459, 8.647494221806725911176641352691, 9.591268537738103586397612813688

Graph of the $Z$-function along the critical line