Properties

Label 2-9240-1.1-c1-0-108
Degree $2$
Conductor $9240$
Sign $-1$
Analytic cond. $73.7817$
Root an. cond. $8.58963$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s − 7-s + 9-s − 11-s − 6·13-s + 15-s + 2·17-s + 8·19-s − 21-s + 25-s + 27-s − 6·29-s − 33-s − 35-s − 10·37-s − 6·39-s − 2·41-s − 4·43-s + 45-s + 8·47-s + 49-s + 2·51-s − 10·53-s − 55-s + 8·57-s − 4·59-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s − 0.377·7-s + 1/3·9-s − 0.301·11-s − 1.66·13-s + 0.258·15-s + 0.485·17-s + 1.83·19-s − 0.218·21-s + 1/5·25-s + 0.192·27-s − 1.11·29-s − 0.174·33-s − 0.169·35-s − 1.64·37-s − 0.960·39-s − 0.312·41-s − 0.609·43-s + 0.149·45-s + 1.16·47-s + 1/7·49-s + 0.280·51-s − 1.37·53-s − 0.134·55-s + 1.05·57-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9240\)    =    \(2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11\)
Sign: $-1$
Analytic conductor: \(73.7817\)
Root analytic conductor: \(8.58963\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 9240,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 + T \)
good13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.47734703871368002922563857374, −6.91423696133026922850813890603, −5.92714819929058745566748931795, −5.22346122303530198663923685987, −4.77124588459378023443590491648, −3.56723813034226821562622592153, −3.06793486714835139954663806619, −2.27138899941067196842564068584, −1.39403613941301497854176622757, 0, 1.39403613941301497854176622757, 2.27138899941067196842564068584, 3.06793486714835139954663806619, 3.56723813034226821562622592153, 4.77124588459378023443590491648, 5.22346122303530198663923685987, 5.92714819929058745566748931795, 6.91423696133026922850813890603, 7.47734703871368002922563857374

Graph of the $Z$-function along the critical line