Properties

Label 2-91728-1.1-c1-0-121
Degree $2$
Conductor $91728$
Sign $-1$
Analytic cond. $732.451$
Root an. cond. $27.0638$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 2·11-s + 13-s − 6·17-s + 4·19-s − 2·23-s − 25-s − 4·31-s + 2·37-s + 2·41-s + 4·43-s + 12·53-s − 4·55-s − 6·61-s + 2·65-s + 12·67-s − 2·71-s + 2·73-s + 4·83-s − 12·85-s + 2·89-s + 8·95-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.603·11-s + 0.277·13-s − 1.45·17-s + 0.917·19-s − 0.417·23-s − 1/5·25-s − 0.718·31-s + 0.328·37-s + 0.312·41-s + 0.609·43-s + 1.64·53-s − 0.539·55-s − 0.768·61-s + 0.248·65-s + 1.46·67-s − 0.237·71-s + 0.234·73-s + 0.439·83-s − 1.30·85-s + 0.211·89-s + 0.820·95-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 91728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(91728\)    =    \(2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(732.451\)
Root analytic conductor: \(27.0638\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 91728,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.92424678105164, −13.61929151873349, −13.15735752634023, −12.82109796998035, −12.11045477535186, −11.60789577208051, −11.08440943614861, −10.58735438849120, −10.19471198425733, −9.498818925778992, −9.232545059661059, −8.702011081763350, −8.010537589453165, −7.587800741645826, −6.906830085227933, −6.457950476838531, −5.816036500190178, −5.443348846494952, −4.892439875133228, −4.140449029468237, −3.684499495819370, −2.754632101840971, −2.338785420350957, −1.757322171875628, −0.9275108780174391, 0, 0.9275108780174391, 1.757322171875628, 2.338785420350957, 2.754632101840971, 3.684499495819370, 4.140449029468237, 4.892439875133228, 5.443348846494952, 5.816036500190178, 6.457950476838531, 6.906830085227933, 7.587800741645826, 8.010537589453165, 8.702011081763350, 9.232545059661059, 9.498818925778992, 10.19471198425733, 10.58735438849120, 11.08440943614861, 11.60789577208051, 12.11045477535186, 12.82109796998035, 13.15735752634023, 13.61929151873349, 13.92424678105164

Graph of the $Z$-function along the critical line