| L(s)  = 1 | − 2·5-s     + 7-s         − 2·11-s     + 13-s         − 6·17-s     − 5·19-s         + 6·23-s     − 25-s         − 8·29-s     + 8·31-s         − 2·35-s     − 5·37-s         − 8·41-s     − 4·43-s         − 10·47-s     − 6·49-s         − 4·53-s     + 4·55-s         + 14·59-s     + 3·61-s         − 2·65-s     − 13·67-s         − 4·71-s     + 9·73-s         − 2·77-s     + 11·79-s         − 12·83-s  + ⋯ | 
| L(s)  = 1 | − 0.894·5-s     + 0.377·7-s         − 0.603·11-s     + 0.277·13-s         − 1.45·17-s     − 1.14·19-s         + 1.25·23-s     − 1/5·25-s         − 1.48·29-s     + 1.43·31-s         − 0.338·35-s     − 0.821·37-s         − 1.24·41-s     − 0.609·43-s         − 1.45·47-s     − 6/7·49-s         − 0.549·53-s     + 0.539·55-s         + 1.82·59-s     + 0.384·61-s         − 0.248·65-s     − 1.58·67-s         − 0.474·71-s     + 1.05·73-s         − 0.227·77-s     + 1.23·79-s         − 1.31·83-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
| good | 5 | \( 1 + 2 T + p T^{2} \) | 1.5.c | 
|  | 7 | \( 1 - T + p T^{2} \) | 1.7.ab | 
|  | 11 | \( 1 + 2 T + p T^{2} \) | 1.11.c | 
|  | 13 | \( 1 - T + p T^{2} \) | 1.13.ab | 
|  | 17 | \( 1 + 6 T + p T^{2} \) | 1.17.g | 
|  | 19 | \( 1 + 5 T + p T^{2} \) | 1.19.f | 
|  | 23 | \( 1 - 6 T + p T^{2} \) | 1.23.ag | 
|  | 29 | \( 1 + 8 T + p T^{2} \) | 1.29.i | 
|  | 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai | 
|  | 37 | \( 1 + 5 T + p T^{2} \) | 1.37.f | 
|  | 41 | \( 1 + 8 T + p T^{2} \) | 1.41.i | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 + 10 T + p T^{2} \) | 1.47.k | 
|  | 53 | \( 1 + 4 T + p T^{2} \) | 1.53.e | 
|  | 59 | \( 1 - 14 T + p T^{2} \) | 1.59.ao | 
|  | 61 | \( 1 - 3 T + p T^{2} \) | 1.61.ad | 
|  | 67 | \( 1 + 13 T + p T^{2} \) | 1.67.n | 
|  | 71 | \( 1 + 4 T + p T^{2} \) | 1.71.e | 
|  | 73 | \( 1 - 9 T + p T^{2} \) | 1.73.aj | 
|  | 79 | \( 1 - 11 T + p T^{2} \) | 1.79.al | 
|  | 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m | 
|  | 89 | \( 1 - 2 T + p T^{2} \) | 1.89.ac | 
|  | 97 | \( 1 - T + p T^{2} \) | 1.97.ab | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−9.769448299448916235208114523596, −8.592890072161639297834755709110, −8.259009289437324426759982017047, −7.16805056915051949890836075773, −6.43678790901966127825414818556, −5.10771490038786008782299193880, −4.36561069961878140692428475651, −3.30104442940939862253080847088, −1.95808037268967567773052280909, 0, 
1.95808037268967567773052280909, 3.30104442940939862253080847088, 4.36561069961878140692428475651, 5.10771490038786008782299193880, 6.43678790901966127825414818556, 7.16805056915051949890836075773, 8.259009289437324426759982017047, 8.592890072161639297834755709110, 9.769448299448916235208114523596
