Properties

Label 2-8624-1.1-c1-0-94
Degree $2$
Conductor $8624$
Sign $-1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·5-s + 9-s + 11-s − 4·13-s + 4·15-s − 4·19-s − 4·23-s − 25-s + 4·27-s + 10·29-s + 2·31-s − 2·33-s + 10·37-s + 8·39-s − 4·43-s − 2·45-s − 2·47-s + 2·53-s − 2·55-s + 8·57-s + 6·59-s + 8·65-s + 8·67-s + 8·69-s − 12·71-s + 12·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.894·5-s + 1/3·9-s + 0.301·11-s − 1.10·13-s + 1.03·15-s − 0.917·19-s − 0.834·23-s − 1/5·25-s + 0.769·27-s + 1.85·29-s + 0.359·31-s − 0.348·33-s + 1.64·37-s + 1.28·39-s − 0.609·43-s − 0.298·45-s − 0.291·47-s + 0.274·53-s − 0.269·55-s + 1.05·57-s + 0.781·59-s + 0.992·65-s + 0.977·67-s + 0.963·69-s − 1.42·71-s + 1.40·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 2 T + p T^{2} \) 1.5.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.32420508778679005054827500490, −6.63389363769639516874915074692, −6.13863232188018401440349319825, −5.34961543116429007897252188097, −4.50410021803085905518670644522, −4.25267031441684714845495523103, −3.08557065446550481726612453349, −2.21593463041099287027782326347, −0.857071651185432583891932144181, 0, 0.857071651185432583891932144181, 2.21593463041099287027782326347, 3.08557065446550481726612453349, 4.25267031441684714845495523103, 4.50410021803085905518670644522, 5.34961543116429007897252188097, 6.13863232188018401440349319825, 6.63389363769639516874915074692, 7.32420508778679005054827500490

Graph of the $Z$-function along the critical line