Properties

Label 2-8624-1.1-c1-0-86
Degree $2$
Conductor $8624$
Sign $1$
Analytic cond. $68.8629$
Root an. cond. $8.29837$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 2·5-s − 2·9-s + 11-s + 3·13-s + 2·15-s − 2·17-s − 4·19-s + 4·23-s − 25-s − 5·27-s − 7·29-s + 8·31-s + 33-s + 12·37-s + 3·39-s − 8·41-s − 8·43-s − 4·45-s + 10·47-s − 2·51-s + 14·53-s + 2·55-s − 4·57-s + 9·59-s − 5·61-s + 6·65-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.894·5-s − 2/3·9-s + 0.301·11-s + 0.832·13-s + 0.516·15-s − 0.485·17-s − 0.917·19-s + 0.834·23-s − 1/5·25-s − 0.962·27-s − 1.29·29-s + 1.43·31-s + 0.174·33-s + 1.97·37-s + 0.480·39-s − 1.24·41-s − 1.21·43-s − 0.596·45-s + 1.45·47-s − 0.280·51-s + 1.92·53-s + 0.269·55-s − 0.529·57-s + 1.17·59-s − 0.640·61-s + 0.744·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8624\)    =    \(2^{4} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(68.8629\)
Root analytic conductor: \(8.29837\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.977718703\)
\(L(\frac12)\) \(\approx\) \(2.977718703\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 9 T + p T^{2} \) 1.59.aj
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.976393109287411883837036118592, −6.98961193350023077900599954290, −6.31777606632748671066113064633, −5.83742658800599768792910896575, −5.07594837173912661879213190321, −4.11282474509209200346343655278, −3.45475243729387401578533534375, −2.47405769437409514114859322130, −2.00684921990468849997474512052, −0.813048474466193814798899274179, 0.813048474466193814798899274179, 2.00684921990468849997474512052, 2.47405769437409514114859322130, 3.45475243729387401578533534375, 4.11282474509209200346343655278, 5.07594837173912661879213190321, 5.83742658800599768792910896575, 6.31777606632748671066113064633, 6.98961193350023077900599954290, 7.976393109287411883837036118592

Graph of the $Z$-function along the critical line