Properties

Label 2-8450-1.1-c1-0-104
Degree $2$
Conductor $8450$
Sign $-1$
Analytic cond. $67.4735$
Root an. cond. $8.21423$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 7-s − 8-s − 2·9-s − 6·11-s − 12-s + 14-s + 16-s + 3·17-s + 2·18-s − 2·19-s + 21-s + 6·22-s + 24-s + 5·27-s − 28-s + 6·29-s + 4·31-s − 32-s + 6·33-s − 3·34-s − 2·36-s − 7·37-s + 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.377·7-s − 0.353·8-s − 2/3·9-s − 1.80·11-s − 0.288·12-s + 0.267·14-s + 1/4·16-s + 0.727·17-s + 0.471·18-s − 0.458·19-s + 0.218·21-s + 1.27·22-s + 0.204·24-s + 0.962·27-s − 0.188·28-s + 1.11·29-s + 0.718·31-s − 0.176·32-s + 1.04·33-s − 0.514·34-s − 1/3·36-s − 1.15·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8450\)    =    \(2 \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(67.4735\)
Root analytic conductor: \(8.21423\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 8450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
13 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.58543076531539186507707996737, −6.68519917257609817275888561025, −6.22050342677947846490119014336, −5.22470196642237218714598599078, −5.11503905300625867515341835277, −3.71632285273985803925942045989, −2.83043023758736407632723876116, −2.30738287414640841822352268120, −0.885388786186633410385805055803, 0, 0.885388786186633410385805055803, 2.30738287414640841822352268120, 2.83043023758736407632723876116, 3.71632285273985803925942045989, 5.11503905300625867515341835277, 5.22470196642237218714598599078, 6.22050342677947846490119014336, 6.68519917257609817275888561025, 7.58543076531539186507707996737

Graph of the $Z$-function along the critical line