Properties

Label 8450.c
Number of curves $3$
Conductor $8450$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 8450.c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 8450.c do not have complex multiplication.

Modular form 8450.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} - 2 q^{9} - 6 q^{11} - q^{12} + q^{14} + q^{16} + 3 q^{17} + 2 q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 8450.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
8450.c1 8450c3 \([1, 1, 0, -1941475, -1042037875]\) \(-10730978619193/6656\) \(-501988136000000\) \([]\) \(108864\) \(2.1416\)  
8450.c2 8450c2 \([1, 1, 0, -19100, -2033000]\) \(-10218313/17576\) \(-1325562421625000\) \([]\) \(36288\) \(1.5923\)  
8450.c3 8450c1 \([1, 1, 0, 2025, 58375]\) \(12167/26\) \(-1960891156250\) \([]\) \(12096\) \(1.0430\) \(\Gamma_0(N)\)-optimal